Lemma 30.24.2. Let $A$ be Noetherian ring and $I \subset A$ and ideal. Let $f : X \to \mathop{\mathrm{Spec}}(A)$ be a proper morphism and let $\mathcal{L}$ be an $f$-ample invertible sheaf. Let $\mathcal{I} = I\mathcal{O}_ X$. Let $(\mathcal{F}_ n)$ be an object of $\textit{Coh}(X, \mathcal{I})$. Then there exists an integer $d_0$ such that

for all $n \geq 0$ and all $d \geq d_0$.

## Comments (0)