Lemma 10.50.8. Let $A$ be a valuation ring. For any prime ideal $\mathfrak p \subset A$ the quotient $A/\mathfrak p$ is a valuation ring. The same is true for the localization $A_\mathfrak p$ and in fact any localization of $A$.

**Proof.**
Use the characterization of valuation rings given in Lemma 10.50.4.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: