Lemma 67.30.11. Let $S$ be a scheme. Let $f : X \to Y$ be a flat morphism of algebraic spaces over $S$. Let $V \to Y$ be a quasi-compact open immersion. If $V$ is scheme theoretically dense in $Y$, then $f^{-1}V$ is scheme theoretically dense in $X$.
Proof. Using the characterization of scheme theoretically dense opens in Lemma 67.17.2 and using the characterization of flat morphisms in terms of étale coverings in Lemma 67.30.5 we reduce to the case of schemes which is Morphisms, Lemma 29.25.15. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: