Lemma 75.11.1. Let S be a scheme. Let f : X \to Y be an affine morphism of algebraic spaces over S. Then f_* defines a derived functor f_* : D(\mathit{QCoh}(\mathcal{O}_ X)) \to D(\mathit{QCoh}(\mathcal{O}_ Y)). This functor has the property that
\xymatrix{ D(\mathit{QCoh}(\mathcal{O}_ X)) \ar[d]_{f_*} \ar[r] & D_\mathit{QCoh}(\mathcal{O}_ X) \ar[d]^{Rf_*} \\ D(\mathit{QCoh}(\mathcal{O}_ Y)) \ar[r] & D_\mathit{QCoh}(\mathcal{O}_ Y) }
commutes.
Proof.
The functor f_* : \mathit{QCoh}(\mathcal{O}_ X) \to \mathit{QCoh}(\mathcal{O}_ Y) is exact, see Cohomology of Spaces, Lemma 69.8.2. Hence f_* defines a derived functor f_* : D(\mathit{QCoh}(\mathcal{O}_ X)) \to D(\mathit{QCoh}(\mathcal{O}_ Y)) by simply applying f_* to any representative complex, see Derived Categories, Lemma 13.16.9. For any complex of \mathcal{O}_ X-modules \mathcal{F}^\bullet there is a canonical map f_*\mathcal{F}^\bullet \to Rf_*\mathcal{F}^\bullet . To finish the proof we show this is a quasi-isomorphism when \mathcal{F}^\bullet is a complex with each \mathcal{F}^ n quasi-coherent. The statement is étale local on Y hence we may assume Y affine. As an affine morphism is representable we reduce to the case of schemes by the compatibility of Remark 75.6.3. The case of schemes is Derived Categories of Schemes, Lemma 36.7.1.
\square
Comments (0)