Loading web-font TeX/Math/Italic

The Stacks project

Lemma 75.14.3. Let S be a scheme. Let (U \subset X, j : V \to X) be an elementary distinguished square of algebraic space over S. Let E be a perfect object of D(\mathcal{O}_ V) supported on j^{-1}(T) where T = |X| \setminus |U|. Then Rj_*E is a perfect object of D(\mathcal{O}_ X).

Proof. Being perfect is local on X_{\acute{e}tale}. Thus it suffices to check that Rj_*E is perfect when restricted to U and V. We have Rj_*E|_ V = E by Lemma 75.10.7 which is perfect. We have Rj_*E|_ U = 0 because E|_{V \setminus j^{-1}(T)} = 0 (use Lemma 75.3.1). \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.