Lemma 10.155.12. Let R \to S be a ring map. Let \mathfrak q \subset S be a prime lying over \mathfrak p \subset R. Choose separable algebraic closures \kappa (\mathfrak p) \subset \kappa _1^{sep} and \kappa (\mathfrak q) \subset \kappa _2^{sep}. Let R^{sh} and S^{sh} be the corresponding strict henselizations of R_\mathfrak p and S_\mathfrak q. Given any commutative diagram
The local ring map R^{sh} \to S^{sh} of Lemma 10.155.10 identifies S^{sh} with the strict henselization of R^{sh} \otimes _ R S at a prime lying over \mathfrak q and the maximal ideal \mathfrak m^{sh} \subset R^{sh}.
Comments (2)
Comment #4681 by Peng DU on
Comment #4806 by Johan on
There are also: