Lemma 75.20.4. Let $S$ be a scheme. Let $g : Y' \to Y$ be a morphism of algebraic spaces over $S$. Let $f : X \to Y$ be a quasi-compact and quasi-separated morphism of algebraic spaces over $S$. Consider the base change diagram

$\xymatrix{ X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^ f \\ Y' \ar[r]^ g & Y }$

If $X$ and $Y'$ are Tor independent over $Y$, then for all $E \in D_\mathit{QCoh}(\mathcal{O}_ X)$ we have $Rf'_*L(g')^*E = Lg^*Rf_*E$.

Proof. For any object $E$ of $D(\mathcal{O}_ X)$ we can use Cohomology on Sites, Remark 21.19.3 to get a canonical base change map $Lg^*Rf_*E \to Rf'_*L(g')^*E$. To check this is an isomorphism we may work étale locally on $Y'$. Hence we may assume $g : Y' \to Y$ is a morphism of affine schemes. In particular, $g$ is affine and it suffices to show that

$Rg_*Lg^*Rf_*E \to Rg_*Rf'_*L(g')^*E = Rf_*(Rg'_* L(g')^* E)$

is an isomorphism, see Lemma 75.6.4 (and use Lemmas 75.5.5, 75.5.6, and 75.6.1 to see that the objects $Rf'_*L(g')^*E$ and $Lg^*Rf_*E$ have quasi-coherent cohomology sheaves). Note that $g'$ is affine as well (Morphisms of Spaces, Lemma 67.20.5). By Lemma 75.6.5 the map becomes a map

$Rf_*E \otimes _{\mathcal{O}_ Y}^\mathbf {L} g_*\mathcal{O}_{Y'} \longrightarrow Rf_*(E \otimes _{\mathcal{O}_ X}^\mathbf {L} g'_*\mathcal{O}_{X'})$

Observe that $g'_*\mathcal{O}_{X'} = f^*g_*\mathcal{O}_{Y'}$. Thus by Lemma 75.20.1 it suffices to prove that $Lf^*g_*\mathcal{O}_{Y'} = f^*g_*\mathcal{O}_{Y'}$. This follows from our assumption that $X$ and $Y'$ are Tor independent over $Y$. Namely, to check it we may work étale locally on $X$, hence we may also assume $X$ is affine. Say $X = \mathop{\mathrm{Spec}}(A)$, $Y = \mathop{\mathrm{Spec}}(R)$ and $Y' = \mathop{\mathrm{Spec}}(R')$. Our assumption implies that $A$ and $R'$ are Tor independent over $R$ (see Lemma 75.20.3 and More on Algebra, Lemma 15.61.6), i.e., $\text{Tor}_ i^ R(A, R') = 0$ for $i > 0$. In other words $A \otimes _ R^\mathbf {L} R' = A \otimes _ R R'$ which exactly means that $Lf^*g_*\mathcal{O}_{Y'} = f^*g_*\mathcal{O}_{Y'}$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08IR. Beware of the difference between the letter 'O' and the digit '0'.