Lemma 73.20.5. Let $g : S' \to S$ be a morphism of affine schemes. Consider a cartesian square

\[ \xymatrix{ X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^ f \\ S' \ar[r]^ g & S } \]

of quasi-compact and quasi-separated algebraic spaces. Assume $g$ and $f$ Tor independent. Write $S = \mathop{\mathrm{Spec}}(R)$ and $S' = \mathop{\mathrm{Spec}}(R')$. For $M, K \in D(\mathcal{O}_ X)$ the canonical map

\[ R\mathop{\mathrm{Hom}}\nolimits _ X(M, K) \otimes ^\mathbf {L}_ R R' \longrightarrow R\mathop{\mathrm{Hom}}\nolimits _{X'}(L(g')^*M, L(g')^*K) \]

in $D(R')$ is an isomorphism in the following two cases

$M \in D(\mathcal{O}_ X)$ is perfect and $K \in D_\mathit{QCoh}(X)$, or

$M \in D(\mathcal{O}_ X)$ is pseudo-coherent, $K \in D_\mathit{QCoh}^+(X)$, and $R'$ has finite tor dimension over $R$.

**Proof.**
There is a canonical map $R\mathop{\mathrm{Hom}}\nolimits _ X(M, K) \to R\mathop{\mathrm{Hom}}\nolimits _{X'}(L(g')^*M, L(g')^*K)$ in $D(\Gamma (X, \mathcal{O}_ X))$ of global hom complexes, see Cohomology on Sites, Section 21.35. Restricting scalars we can view this as a map in $D(R)$. Then we can use the adjointness of restriction and $- \otimes _ R^\mathbf {L} R'$ to get the displayed map of the lemma. Having defined the map it suffices to prove it is an isomorphism in the derived category of abelian groups.

The right hand side is equal to

\[ R\mathop{\mathrm{Hom}}\nolimits _ X(M, R(g')_*L(g')^*K) = R\mathop{\mathrm{Hom}}\nolimits _ X(M, K \otimes _{\mathcal{O}_ X}^\mathbf {L} g'_*\mathcal{O}_{X'}) \]

by Lemma 73.6.5. In both cases the complex $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, K)$ is an object of $D_\mathit{QCoh}(\mathcal{O}_ X)$ by Lemma 73.13.10. There is a natural map

\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, K) \otimes _{\mathcal{O}_ X}^\mathbf {L} g'_*\mathcal{O}_{X'} \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, K \otimes _{\mathcal{O}_ X}^\mathbf {L} g'_*\mathcal{O}_{X'}) \]

which is an isomorphism in both cases Lemma 73.13.11. To see that this lemma applies in case (2) we note that $g'_*\mathcal{O}_{X'} = Rg'_*\mathcal{O}_{X'} = Lf^*g_*\mathcal{O}_ X$ the second equality by Lemma 73.20.4. Using Derived Categories of Schemes, Lemma 36.10.4, Lemma 73.13.3, and Cohomology on Sites, Lemma 21.44.5 we conclude that $g'_*\mathcal{O}_{X'}$ has finite Tor dimension. Hence, in both cases by replacing $K$ by $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, K)$ we reduce to proving

\[ R\Gamma (X, K) \otimes ^\mathbf {L}_ A A' \longrightarrow R\Gamma (X, K \otimes ^\mathbf {L}_{\mathcal{O}_ X} g'_*\mathcal{O}_{X'}) \]

is an isomorphism. Note that the left hand side is equal to $R\Gamma (X', L(g')^*K)$ by Lemma 73.6.5. Hence the result follows from Lemma 73.20.4.
$\square$

## Comments (0)