Lemma 74.23.2. Assumption and notation as in Lemma 74.22.3. Then there are functorial isomorphisms

$H^ i(B, K \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}) \longrightarrow \mathop{\mathrm{Ext}}\nolimits ^ i_{\mathcal{O}_ X}(E, \mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F})$

for $\mathcal{F}$ quasi-coherent on $B$ compatible with boundary maps (see proof).

Proof. As in the proof of Lemma 74.22.3 let $E^\vee$ be the dual perfect complex and recall that $K = Rf_*(E^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{G}^\bullet )$. Since we also have

$\mathop{\mathrm{Ext}}\nolimits ^ i_{\mathcal{O}_ X}(E, \mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F}) = H^ i(X, E^\vee \otimes ^\mathbf {L}_{\mathcal{O}_ X} (\mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F}))$

by construction of $E^\vee$, the existence of the isomorphisms follows from Lemma 74.23.1 applied to $E^\vee$ and $\mathcal{G}^\bullet$. The statement on boundary maps means the following: Given a short exact sequence $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ then the isomorphisms fit into commutative diagrams

$\xymatrix{ H^ i(B, K \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}_3) \ar[r] \ar[d]_\delta & \mathop{\mathrm{Ext}}\nolimits ^ i_{\mathcal{O}_ X}(E, \mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F}_3) \ar[d]^\delta \\ H^{i + 1}(B, K \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}_1) \ar[r] & \mathop{\mathrm{Ext}}\nolimits ^{i + 1}_{\mathcal{O}_ X}(E, \mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F}_1) }$

where the boundary maps come from the distinguished triangle

$K \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}_1 \to K \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}_2 \to K \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}_3 \to K \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}_1$

and the distinguished triangle in $D(\mathcal{O}_ X)$ associated to the short exact sequence

$0 \to \mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F}_1 \to \mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F}_2 \to \mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F}_3 \to 0$

of complexes. This sequence is exact because $\mathcal{G}^ n$ is flat over $B$. We omit the verification of the commutativity of the displayed diagram. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).