The Stacks project

Lemma 75.23.1. Assumptions and notation as in Lemma 75.22.2. Then there are functorial isomorphisms

\[ H^ i(B, K \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}) \longrightarrow H^ i(X, E \otimes ^\mathbf {L}_{\mathcal{O}_ X} (\mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F})) \]

for $\mathcal{F}$ quasi-coherent on $B$ compatible with boundary maps (see proof).

Proof. We have

\[ \mathcal{G}^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} Lf^*\mathcal{F} = \mathcal{G}^\bullet \otimes _{f^{-1}\mathcal{O}_ B}^\mathbf {L} f^{-1}\mathcal{F} = \mathcal{G}^\bullet \otimes _{f^{-1}\mathcal{O}_ B} f^{-1}\mathcal{F} = \mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F} \]

the first equality by Cohomology on Sites, Lemma 21.18.5, the second as $\mathcal{G}^ n$ is a flat $f^{-1}\mathcal{O}_ B$-module, and the third by definition of pullbacks. Hence we obtain

\begin{align*} H^ i(X, E \otimes ^\mathbf {L}_{\mathcal{O}_ X} (\mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F})) & = H^ i(X, E \otimes ^\mathbf {L}_{\mathcal{O}_ X} \mathcal{G}^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} Lf^*\mathcal{F}) \\ & = H^ i(B, Rf_*(E \otimes ^\mathbf {L}_{\mathcal{O}_ X} \mathcal{G}^\bullet \otimes ^\mathbf {L}_{\mathcal{O}_ X} Lf^*\mathcal{F})) \\ & = H^ i(B, Rf_*(E \otimes ^\mathbf {L}_{\mathcal{O}_ X} \mathcal{G}^\bullet ) \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}) \\ & = H^ i(B, K \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}) \end{align*}

The first equality by the above, the second by Leray (Cohomology on Sites, Remark 21.14.4), and the third equality by Lemma 75.20.1. The statement on boundary maps means the following: Given a short exact sequence $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ then the isomorphisms fit into commutative diagrams

\[ \xymatrix{ H^ i(B, K \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}_3) \ar[r] \ar[d]_\delta & H^ i(X, E \otimes ^\mathbf {L}_{\mathcal{O}_ X} (\mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F}_3)) \ar[d]^\delta \\ H^{i + 1}(B, K \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}_1) \ar[r] & H^{i + 1}(X, E \otimes ^\mathbf {L}_{\mathcal{O}_ X} (\mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F}_1)) } \]

where the boundary maps come from the distinguished triangle

\[ K \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}_1 \to K \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}_2 \to K \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}_3 \to K \otimes ^\mathbf {L}_{\mathcal{O}_ B} \mathcal{F}_1[1] \]

and the distinguished triangle in $D(\mathcal{O}_ X)$ associated to the short exact sequence

\[ 0 \to \mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F}_1 \to \mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F}_2 \to \mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} f^*\mathcal{F}_3 \to 0 \]

of complexes. This sequence is exact because $\mathcal{G}^ n$ is flat over $B$. We omit the verification of the commutativity of the displayed diagram. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A1M. Beware of the difference between the letter 'O' and the digit '0'.