Lemma 91.4.1. Let $i : (X, \mathcal{O}_ X) \to (X', \mathcal{O}_{X'})$ be a first order thickening of ringed spaces. Assume given extensions
as in (91.4.0.1) and maps $\varphi : \mathcal{F} \to \mathcal{G}$ and $\psi : \mathcal{K} \to \mathcal{L}$.
If there exists an $\mathcal{O}_{X'}$-module map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$ compatible with $\varphi $ and $\psi $, then the diagram
\[ \xymatrix{ \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F} \ar[r]_-{c_{\mathcal{F}'}} \ar[d]_{1 \otimes \varphi } & \mathcal{K} \ar[d]^\psi \\ \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{G} \ar[r]^-{c_{\mathcal{G}'}} & \mathcal{L} } \]is commutative.
The set of $\mathcal{O}_{X'}$-module maps $\varphi ' : \mathcal{F}' \to \mathcal{G}'$ compatible with $\varphi $ and $\psi $ is, if nonempty, a principal homogeneous space under $\mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{L})$.
Comments (0)