The Stacks project

Lemma 91.4.2. Let $i : (X, \mathcal{O}_ X) \to (X', \mathcal{O}_{X'})$ be a first order thickening of ringed spaces. Assume given extensions

\[ 0 \to \mathcal{K} \to \mathcal{F}' \to \mathcal{F} \to 0 \quad \text{and}\quad 0 \to \mathcal{L} \to \mathcal{G}' \to \mathcal{G} \to 0 \]

as in (91.4.0.1) and maps $\varphi : \mathcal{F} \to \mathcal{G}$ and $\psi : \mathcal{K} \to \mathcal{L}$. Assume the diagram

\[ \xymatrix{ \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F} \ar[r]_-{c_{\mathcal{F}'}} \ar[d]_{1 \otimes \varphi } & \mathcal{K} \ar[d]^\psi \\ \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{G} \ar[r]^-{c_{\mathcal{G}'}} & \mathcal{L} } \]

is commutative. Then there exists an element

\[ o(\varphi , \psi ) \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathcal{F}, \mathcal{L}) \]

whose vanishing is a necessary and sufficient condition for the existence of a map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$ compatible with $\varphi $ and $\psi $.

Proof. We can construct explicitly an extension

\[ 0 \to \mathcal{L} \to \mathcal{H} \to \mathcal{F} \to 0 \]

by taking $\mathcal{H}$ to be the cohomology of the complex

\[ \mathcal{K} \xrightarrow {1, - \psi } \mathcal{F}' \oplus \mathcal{G}' \xrightarrow {\varphi , 1} \mathcal{G} \]

in the middle (with obvious notation). A calculation with local sections using the assumption that the diagram of the lemma commutes shows that $\mathcal{H}$ is annihilated by $\mathcal{I}$. Hence $\mathcal{H}$ defines a class in

\[ \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathcal{F}, \mathcal{L}) \subset \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_{X'}}(\mathcal{F}, \mathcal{L}) \]

Finally, the class of $\mathcal{H}$ is the difference of the pushout of the extension $\mathcal{F}'$ via $\psi $ and the pullback of the extension $\mathcal{G}'$ via $\varphi $ (calculations omitted). Thus the vanishing of the class of $\mathcal{H}$ is equivalent to the existence of a commutative diagram

\[ \xymatrix{ 0 \ar[r] & \mathcal{K} \ar[r] \ar[d]_{\psi } & \mathcal{F}' \ar[r] \ar[d]_{\varphi '} & \mathcal{F} \ar[r] \ar[d]_\varphi & 0\\ 0 \ar[r] & \mathcal{L} \ar[r] & \mathcal{G}' \ar[r] & \mathcal{G} \ar[r] & 0 } \]

as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08L6. Beware of the difference between the letter 'O' and the digit '0'.