Lemma 91.4.3. Let $i : (X, \mathcal{O}_ X) \to (X', \mathcal{O}_{X'})$ be a first order thickening of ringed spaces. Assume given $\mathcal{O}_ X$-modules $\mathcal{F}$, $\mathcal{K}$ and an $\mathcal{O}_ X$-linear map $c : \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{K}$. If there exists a sequence (91.4.0.1) with $c_{\mathcal{F}'} = c$ then the set of isomorphism classes of these extensions is principal homogeneous under $\mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathcal{F}, \mathcal{K})$.
Proof. Assume given extensions
with $c_{\mathcal{F}'_1} = c_{\mathcal{F}'_2} = c$. Then the difference (in the extension group, see Homology, Section 12.6) is an extension
where $\mathcal{E}$ is annihilated by $\mathcal{I}$ (local computation omitted). Hence the sequence is an extension of $\mathcal{O}_ X$-modules, see Modules, Lemma 17.13.4. Conversely, given such an extension $\mathcal{E}$ we can add the extension $\mathcal{E}$ to the $\mathcal{O}_{X'}$-extension $\mathcal{F}'$ without affecting the map $c_{\mathcal{F}'}$. Some details omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)