Remark 91.4.7. Let (X, \mathcal{O}_ X) be a ringed space. Let (X, \mathcal{O}_ X) \to (X'_ i, \mathcal{O}_{X'_ i}), i = 1, 2 be first order thickenings with ideal sheaves \mathcal{I}_ i. Let h : (X'_1, \mathcal{O}_{X'_1}) \to (X'_2, \mathcal{O}_{X'_2}) be a morphism of first order thickenings of (X, \mathcal{O}_ X). Picture
Observe that h^\sharp : \mathcal{O}_{X'_2} \to \mathcal{O}_{X'_1} in particular induces an \mathcal{O}_ X-module map \mathcal{I}_2 \to \mathcal{I}_1. Let \mathcal{F} be an \mathcal{O}_ X-module. Let (\mathcal{K}_ i, c_ i), i = 1, 2 be a pair consisting of an \mathcal{O}_ X-module \mathcal{K}_ i and a map c_ i : \mathcal{I}_ i \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{K}_ i. Assume furthermore given a map of \mathcal{O}_ X-modules \mathcal{K}_2 \to \mathcal{K}_1 such that
is commutative. Then there is a canonical functoriality
Namely, thinking of all sheaves \mathcal{O}_ X, \mathcal{O}_{X'_ i}, \mathcal{F}, \mathcal{K}_ i, etc as sheaves on X, we set given \mathcal{F}'_2 the sheaf \mathcal{F}'_1 equal to the pushout, i.e., fitting into the following diagram of extensions
We omit the construction of the \mathcal{O}_{X'_1}-module structure on the pushout (this uses the commutativity of the diagram involving c_1 and c_2).
Comments (0)