Remark 91.4.8. Let $(X, \mathcal{O}_ X)$, $(X, \mathcal{O}_ X) \to (X'_ i, \mathcal{O}_{X'_ i})$, $\mathcal{I}_ i$, and $h : (X'_1, \mathcal{O}_{X'_1}) \to (X'_2, \mathcal{O}_{X'_2})$ be as in Remark 91.4.7. Assume that we are given trivializations $\pi _ i : X'_ i \to X$ such that $\pi _1 = h \circ \pi _2$. In other words, assume $h$ is a morphism of trivialized first order thickening of $(X, \mathcal{O}_ X)$. Let $(\mathcal{K}_ i, c_ i)$, $i = 1, 2$ be a pair consisting of an $\mathcal{O}_ X$-module $\mathcal{K}_ i$ and a map $c_ i : \mathcal{I}_ i \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{K}_ i$. Assume furthermore given a map of $\mathcal{O}_ X$-modules $\mathcal{K}_2 \to \mathcal{K}_1$ such that
is commutative. In this situation the construction of Remark 91.4.6 induces a commutative diagram
where the vertical map on the right is given by functoriality of $\mathop{\mathrm{Ext}}\nolimits $ and the map $\mathcal{K}_2 \to \mathcal{K}_1$ and the vertical map on the left is the one from Remark 91.4.7.
Comments (0)