Remark 91.4.10. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. Let
be a complex first order thickenings of $(X, \mathcal{O}_ X)$, see Remark 91.4.9. Let $(\mathcal{K}_ i, c_ i)$, $i = 1, 2, 3$ be pairs consisting of an $\mathcal{O}_ X$-module $\mathcal{K}_ i$ and a map $c_ i : \mathcal{I}_ i \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{K}_ i$. Assume given a short exact sequence of $\mathcal{O}_ X$-modules
such that
are commutative. Finally, assume given an extension
as in (91.4.0.1) with $\mathcal{K} = \mathcal{K}_2$ of $\mathcal{O}_{X'_2}$-modules with $c_{\mathcal{F}'_2} = c_2$. In this situation we can apply the functoriality of Remark 91.4.7 to obtain an extension $\mathcal{F}'_1$ on $X'_1$ (we'll describe $\mathcal{F}'_1$ in this special case below). By Remark 91.4.6 using the canonical splitting $\pi : (X'_1, \mathcal{O}_{X'_1}) \to (X, \mathcal{O}_ X)$ of Remark 91.4.9 we obtain $\xi _{\mathcal{F}'_1} \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathcal{F}, \mathcal{K}_1)$. Finally, we have the obstruction
see Lemma 91.4.4. In this situation we claim that the canonical map
coming from the short exact sequence $0 \to \mathcal{K}_3 \to \mathcal{K}_2 \to \mathcal{K}_1 \to 0$ sends $\xi _{\mathcal{F}'_1}$ to the obstruction class $o(\mathcal{F}, \mathcal{K}_3, c_3)$.
To prove this claim choose an embedding $j : \mathcal{K}_3 \to \mathcal{K}$ where $\mathcal{K}$ is an injective $\mathcal{O}_ X$-module. We can lift $j$ to a map $j' : \mathcal{K}_2 \to \mathcal{K}$. Set $\mathcal{E}'_2 = j'_*\mathcal{F}'_2$ equal to the pushout of $\mathcal{F}'_2$ by $j'$ so that $c_{\mathcal{E}'_2} = j' \circ c_2$. Picture:
Set $\mathcal{E}'_3 = \mathcal{E}'_2$ but viewed as an $\mathcal{O}_{X'_3}$-module via $\mathcal{O}_{X'_3} \to \mathcal{O}_{X'_2}$. Then $c_{\mathcal{E}'_3} = j \circ c_3$. The proof of Lemma 91.4.4 constructs $o(\mathcal{F}, \mathcal{K}_3, c_3)$ as the boundary of the class of the extension of $\mathcal{O}_ X$-modules
On the other hand, note that $\mathcal{F}'_1 = \mathcal{F}'_2/\mathcal{K}_3$ hence the class $\xi _{\mathcal{F}'_1}$ is the class of the extension
seen as a sequence of $\mathcal{O}_ X$-modules using $\pi ^\sharp $ where $\pi : (X'_1, \mathcal{O}_{X'_1}) \to (X, \mathcal{O}_ X)$ is the canonical splitting. Thus finally, the claim follows from the fact that we have a commutative diagram
which is $\mathcal{O}_ X$-linear (with the $\mathcal{O}_ X$-module structures given above).
Comments (0)