The Stacks project

Remark 91.4.10. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. Let

\[ (X'_1, \mathcal{O}_{X'_1}) \to (X'_2, \mathcal{O}_{X'_2}) \to (X'_3, \mathcal{O}_{X'_3}) \]

be a complex first order thickenings of $(X, \mathcal{O}_ X)$, see Remark 91.4.9. Let $(\mathcal{K}_ i, c_ i)$, $i = 1, 2, 3$ be pairs consisting of an $\mathcal{O}_ X$-module $\mathcal{K}_ i$ and a map $c_ i : \mathcal{I}_ i \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{K}_ i$. Assume given a short exact sequence of $\mathcal{O}_ X$-modules

\[ 0 \to \mathcal{K}_3 \to \mathcal{K}_2 \to \mathcal{K}_1 \to 0 \]

such that

\[ \vcenter { \xymatrix{ \mathcal{I}_2 \otimes _{\mathcal{O}_ X} \mathcal{F} \ar[r]_-{c_2} \ar[d] & \mathcal{K}_2 \ar[d] \\ \mathcal{I}_1 \otimes _{\mathcal{O}_ X} \mathcal{F} \ar[r]^-{c_1} & \mathcal{K}_1 } } \quad \text{and}\quad \vcenter { \xymatrix{ \mathcal{I}_3 \otimes _{\mathcal{O}_ X} \mathcal{F} \ar[r]_-{c_3} \ar[d] & \mathcal{K}_3 \ar[d] \\ \mathcal{I}_2 \otimes _{\mathcal{O}_ X} \mathcal{F} \ar[r]^-{c_2} & \mathcal{K}_2 } } \]

are commutative. Finally, assume given an extension

\[ 0 \to \mathcal{K}_2 \to \mathcal{F}'_2 \to \mathcal{F} \to 0 \]

as in (91.4.0.1) with $\mathcal{K} = \mathcal{K}_2$ of $\mathcal{O}_{X'_2}$-modules with $c_{\mathcal{F}'_2} = c_2$. In this situation we can apply the functoriality of Remark 91.4.7 to obtain an extension $\mathcal{F}'_1$ on $X'_1$ (we'll describe $\mathcal{F}'_1$ in this special case below). By Remark 91.4.6 using the canonical splitting $\pi : (X'_1, \mathcal{O}_{X'_1}) \to (X, \mathcal{O}_ X)$ of Remark 91.4.9 we obtain $\xi _{\mathcal{F}'_1} \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathcal{F}, \mathcal{K}_1)$. Finally, we have the obstruction

\[ o(\mathcal{F}, \mathcal{K}_3, c_3) \in \mathop{\mathrm{Ext}}\nolimits ^2_{\mathcal{O}_ X}(\mathcal{F}, \mathcal{K}_3) \]

see Lemma 91.4.4. In this situation we claim that the canonical map

\[ \partial : \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathcal{F}, \mathcal{K}_1) \longrightarrow \mathop{\mathrm{Ext}}\nolimits ^2_{\mathcal{O}_ X}(\mathcal{F}, \mathcal{K}_3) \]

coming from the short exact sequence $0 \to \mathcal{K}_3 \to \mathcal{K}_2 \to \mathcal{K}_1 \to 0$ sends $\xi _{\mathcal{F}'_1}$ to the obstruction class $o(\mathcal{F}, \mathcal{K}_3, c_3)$.

To prove this claim choose an embedding $j : \mathcal{K}_3 \to \mathcal{K}$ where $\mathcal{K}$ is an injective $\mathcal{O}_ X$-module. We can lift $j$ to a map $j' : \mathcal{K}_2 \to \mathcal{K}$. Set $\mathcal{E}'_2 = j'_*\mathcal{F}'_2$ equal to the pushout of $\mathcal{F}'_2$ by $j'$ so that $c_{\mathcal{E}'_2} = j' \circ c_2$. Picture:

\[ \xymatrix{ 0 \ar[r] & \mathcal{K}_2 \ar[r] \ar[d]_{j'} & \mathcal{F}'_2 \ar[r] \ar[d] & \mathcal{F} \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \mathcal{K} \ar[r] & \mathcal{E}'_2 \ar[r] & \mathcal{F} \ar[r] & 0 } \]

Set $\mathcal{E}'_3 = \mathcal{E}'_2$ but viewed as an $\mathcal{O}_{X'_3}$-module via $\mathcal{O}_{X'_3} \to \mathcal{O}_{X'_2}$. Then $c_{\mathcal{E}'_3} = j \circ c_3$. The proof of Lemma 91.4.4 constructs $o(\mathcal{F}, \mathcal{K}_3, c_3)$ as the boundary of the class of the extension of $\mathcal{O}_ X$-modules

\[ 0 \to \mathcal{K}/\mathcal{K}_3 \to \mathcal{E}'_3/\mathcal{K}_3 \to \mathcal{F} \to 0 \]

On the other hand, note that $\mathcal{F}'_1 = \mathcal{F}'_2/\mathcal{K}_3$ hence the class $\xi _{\mathcal{F}'_1}$ is the class of the extension

\[ 0 \to \mathcal{K}_2/\mathcal{K}_3 \to \mathcal{F}'_2/\mathcal{K}_3 \to \mathcal{F} \to 0 \]

seen as a sequence of $\mathcal{O}_ X$-modules using $\pi ^\sharp $ where $\pi : (X'_1, \mathcal{O}_{X'_1}) \to (X, \mathcal{O}_ X)$ is the canonical splitting. Thus finally, the claim follows from the fact that we have a commutative diagram

\[ \xymatrix{ 0 \ar[r] & \mathcal{K}_2/\mathcal{K}_3 \ar[r] \ar[d] & \mathcal{F}'_2/\mathcal{K}_3 \ar[r] \ar[d] & \mathcal{F} \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \mathcal{K}/\mathcal{K}_3 \ar[r] & \mathcal{E}'_3/\mathcal{K}_3 \ar[r] & \mathcal{F} \ar[r] & 0 } \]

which is $\mathcal{O}_ X$-linear (with the $\mathcal{O}_ X$-module structures given above).


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08LF. Beware of the difference between the letter 'O' and the digit '0'.