Lemma 91.13.3. If there exists a solution to (91.13.0.1), then the set of isomorphism classes of solutions is principal homogeneous under \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {O}( \mathop{N\! L}\nolimits _{\mathcal{O}/\mathcal{O}_\mathcal {B}}, \mathcal{G}).
Proof. We observe right away that given two solutions \mathcal{O}'_1 and \mathcal{O}'_2 to (91.13.0.1) we obtain by Lemma 91.13.1 an obstruction element o(\mathcal{O}'_1, \mathcal{O}'_2) \in \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {O}( \mathop{N\! L}\nolimits _{\mathcal{O}/\mathcal{O}_\mathcal {B}}, \mathcal{G}) to the existence of a map \mathcal{O}'_1 \to \mathcal{O}'_2. Clearly, this element is the obstruction to the existence of an isomorphism, hence separates the isomorphism classes. To finish the proof it therefore suffices to show that given a solution \mathcal{O}' and an element \xi \in \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {O}( \mathop{N\! L}\nolimits _{\mathcal{O}/\mathcal{O}_\mathcal {B}}, \mathcal{G}) we can find a second solution \mathcal{O}'_\xi such that o(\mathcal{O}', \mathcal{O}'_\xi ) = \xi .
Pick \alpha : \mathcal{E} \to \mathcal{O} as in Lemma 91.13.2 for the class \xi . Consider the surjection f^{-1}\mathcal{O}_\mathcal {B}[\mathcal{E}] \to \mathcal{O} with kernel \mathcal{I} and corresponding naive cotangent complex \mathop{N\! L}\nolimits (\alpha ) = (\mathcal{I}/\mathcal{I}^2 \to \Omega _{f^{-1}\mathcal{O}_\mathcal {B}[\mathcal{E}]/ f^{-1}\mathcal{O}_\mathcal {B}} \otimes _{f^{-1}\mathcal{O}_\mathcal {B}[\mathcal{E}]} \mathcal{O}). By the lemma \xi is the class of a morphism \delta : \mathcal{I}/\mathcal{I}^2 \to \mathcal{G}. After replacing \mathcal{E} by \mathcal{E} \times _\mathcal {O} \mathcal{O}' we may also assume that \alpha factors through a map \alpha ' : \mathcal{E} \to \mathcal{O}'.
These choices determine an f^{-1}\mathcal{O}_{\mathcal{B}'}-algebra map \varphi : \mathcal{O}_{\mathcal{B}'}[\mathcal{E}] \to \mathcal{O}'. Let \mathcal{I}' = \mathop{\mathrm{Ker}}(\varphi ). Observe that \varphi induces a map \varphi |_{\mathcal{I}'} : \mathcal{I}' \to \mathcal{G} and that \mathcal{O}' is the pushout, as in the following diagram
Let \psi : \mathcal{I}' \to \mathcal{G} be the sum of the map \varphi |_{\mathcal{I}'} and the composition
Then the pushout along \psi is an other ring extension \mathcal{O}'_\xi fitting into a diagram as above. A calculation (omitted) shows that o(\mathcal{O}', \mathcal{O}'_\xi ) = \xi as desired. \square
Comments (0)