Lemma 91.13.2. Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings on $\mathcal{C}$. Let $\mathcal{G}$ be a $\mathcal{B}$-module. Let $\xi \in \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {B}(\mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}}, \mathcal{G})$. There exists a map of sheaves of sets $\alpha : \mathcal{E} \to \mathcal{B}$ such that $\xi \in \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {B}(\mathop{N\! L}\nolimits (\alpha ), \mathcal{G})$ is the class of a map $\mathcal{I}/\mathcal{I}^2 \to \mathcal{G}$ (see proof for notation).
Proof. Recall that given $\alpha : \mathcal{E} \to \mathcal{B}$ such that $\mathcal{A}[\mathcal{E}] \to \mathcal{B}$ is surjective with kernel $\mathcal{I}$ the complex $\mathop{N\! L}\nolimits (\alpha ) = (\mathcal{I}/\mathcal{I}^2 \to \Omega _{\mathcal{A}[\mathcal{E}]/\mathcal{A}} \otimes _{\mathcal{A}[\mathcal{E}]} \mathcal{B})$ is canonically isomorphic to $\mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}}$, see Modules on Sites, Lemma 18.35.2. Observe moreover, that $\Omega = \Omega _{\mathcal{A}[\mathcal{E}]/\mathcal{A}} \otimes _{\mathcal{A}[\mathcal{E}]} \mathcal{B}$ is the sheaf associated to the presheaf $U \mapsto \bigoplus _{e \in \mathcal{E}(U)} \mathcal{B}(U)$. In other words, $\Omega $ is the free $\mathcal{B}$-module on the sheaf of sets $\mathcal{E}$ and in particular there is a canonical map $\mathcal{E} \to \Omega $.
Having said this, pick some $\mathcal{E}$ (for example $\mathcal{E} = \mathcal{B}$ as in the definition of the naive cotangent complex). The obstruction to writing $\xi $ as the class of a map $\mathcal{I}/\mathcal{I}^2 \to \mathcal{G}$ is an element in $\mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {B}(\Omega , \mathcal{G})$. Say this is represented by the extension $0 \to \mathcal{G} \to \mathcal{H} \to \Omega \to 0$ of $\mathcal{B}$-modules. Consider the sheaf of sets $\mathcal{E}' = \mathcal{E} \times _\Omega \mathcal{H}$ which comes with an induced map $\alpha ' : \mathcal{E}' \to \mathcal{B}$. Let $\mathcal{I}' = \mathop{\mathrm{Ker}}(\mathcal{A}[\mathcal{E}'] \to \mathcal{B})$ and $\Omega ' = \Omega _{\mathcal{A}[\mathcal{E}']/\mathcal{A}} \otimes _{\mathcal{A}[\mathcal{E}']} \mathcal{B}$. The pullback of $\xi $ under the quasi-isomorphism $\mathop{N\! L}\nolimits (\alpha ') \to \mathop{N\! L}\nolimits (\alpha )$ maps to zero in $\mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {B}(\Omega ', \mathcal{G})$ because the pullback of the extension $\mathcal{H}$ by the map $\Omega ' \to \Omega $ is split as $\Omega '$ is the free $\mathcal{B}$-module on the sheaf of sets $\mathcal{E}'$ and since by construction there is a commutative diagram
This finishes the proof. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)