\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

The Stacks project

84.22 Deformations of ringed topoi and the cotangent complex

This section is the continuation of Deformation Theory, Section 83.13 which we urge the reader to read first. We briefly recall the setup. We have a first order thickening $t : (\mathop{\mathit{Sh}}\nolimits (\mathcal{B}), \mathcal{O}_\mathcal {B}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{B}'), \mathcal{O}_{\mathcal{B}'})$ of ringed topoi with $\mathcal{J} = \mathop{\mathrm{Ker}}(t^\sharp )$, a morphism of ringed topoi $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{B}), \mathcal{O}_\mathcal {B})$, an $\mathcal{O}$-module $\mathcal{G}$, and a map $f^{-1}\mathcal{J} \to \mathcal{G}$ of sheaves of $f^{-1}\mathcal{O}_\mathcal {B}$-modules. We ask whether we can find the question mark fitting into the following diagram
\begin{equation} \label{cotangent-equation-to-solve-ringed-topoi} \vcenter { \xymatrix{ 0 \ar[r] & \mathcal{G} \ar[r] & {?} \ar[r] & \mathcal{O} \ar[r] & 0 \\ 0 \ar[r] & f^{-1}\mathcal{J} \ar[u]^ c \ar[r] & f^{-1}\mathcal{O}_{\mathcal{B}'} \ar[u] \ar[r] & f^{-1}\mathcal{O}_\mathcal {B} \ar[u] \ar[r] & 0 } } \end{equation}

and moreover how unique the solution is (if it exists). More precisely, we look for a first order thickening $i : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ and a morphism of thickenings $(f, f')$ as in Deformation Theory, Equation ( where $\mathop{\mathrm{Ker}}(i^\sharp )$ is identified with $\mathcal{G}$ such that $(f')^\sharp $ induces the given map $c$. We will say $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ is a solution to (

Lemma 84.22.1. In the situation above we have

  1. There is a canonical element $\xi \in \mathop{\mathrm{Ext}}\nolimits ^2_\mathcal {O}(L_ f, \mathcal{G})$ whose vanishing is a sufficient and necessary condition for the existence of a solution to (

  2. If there exists a solution, then the set of isomorphism classes of solutions is principal homogeneous under $\mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {O}(L_ f, \mathcal{G})$.

  3. Given a solution $X'$, the set of automorphisms of $X'$ fitting into ( is canonically isomorphic to $\mathop{\mathrm{Ext}}\nolimits ^0_\mathcal {O}(L_ f, \mathcal{G})$.

Proof. Via the identifications $\mathop{N\! L}\nolimits _ f = \tau _{\geq -1}L_ f$ (Lemma 84.21.4) and $H^0(L_{X/S}) = \Omega _{X/S}$ (Lemma 84.21.2) we have seen parts (2) and (3) in Deformation Theory, Lemmas 83.13.1 and 83.13.3.

Proof of (1). We will use the results of Deformation Theory, Lemma 83.13.4 without further mention. Denote

\[ p : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (*), \mathbf{Z}) \quad \text{and}\quad q : (\mathop{\mathit{Sh}}\nolimits (\mathcal{B}), \mathcal{O}_\mathcal {B}) \to (\mathop{\mathit{Sh}}\nolimits (*), \mathbf{Z}). \]

Let $\alpha \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_\mathcal {B}}(\mathop{N\! L}\nolimits _ q, \mathcal{J})$ be the element corresponding to the isomorphism class of $\mathcal{O}_{\mathcal{B}'}$. The existence of $\mathcal{O}'$ corresponds to an element $\beta \in \mathop{\mathrm{Ext}}\nolimits _\mathcal {O}^1(\mathop{N\! L}\nolimits _ p, \mathcal{G})$ which maps to the image of $\alpha $ in $\mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(Lf^*\mathop{N\! L}\nolimits _ q, \mathcal{G})$. Note that

\[ \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(Lf^*\mathop{N\! L}\nolimits _ q, \mathcal{G}) = \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(Lf^*L_ q, \mathcal{G}) \]


\[ \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _ p, \mathcal{G}) = \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(L_ p, \mathcal{G}) \]

by Lemma 84.21.4. The distinguished triangle of Lemma 84.21.3 for $p = q \circ f$ gives rise to a long exact sequence

\[ \ldots \to \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(L_ p, \mathcal{G}) \to \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(Lf^*L_ q, \mathcal{G}) \to \mathop{\mathrm{Ext}}\nolimits ^2_{\mathcal{O}_ X}(L_ f, \mathcal{G}) \to \ldots \]

We obtain the result with $\xi $ the image of $\alpha $. $\square$

Comments (2)

Comment #3285 by Eric Ahlqvist on

The notation in diagram ( differs from the definitions above it.

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08V3. Beware of the difference between the letter 'O' and the digit '0'.