Lemma 91.6.1. In the situation above.
There exists an $\mathcal{O}_{X'}$-module $\mathcal{F}'$ flat over $S'$ with $i^*\mathcal{F}' \cong \mathcal{F}$, if and only if the class $o(\mathcal{F}, f^*\mathcal{J} \otimes _{\mathcal{O}_ X} \mathcal{F}, 1) \in \mathop{\mathrm{Ext}}\nolimits ^2_{\mathcal{O}_ X}( \mathcal{F}, f^*\mathcal{J} \otimes _{\mathcal{O}_ X} \mathcal{F})$ of Lemma 91.4.4 is zero.
If such a module exists, then the set of isomorphism classes of lifts is principal homogeneous under $\mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}( \mathcal{F}, f^*\mathcal{J} \otimes _{\mathcal{O}_ X} \mathcal{F})$.
Given a lift $\mathcal{F}'$, the set of automorphisms of $\mathcal{F}'$ which pull back to $\text{id}_\mathcal {F}$ is canonically isomorphic to $\mathop{\mathrm{Ext}}\nolimits ^0_{\mathcal{O}_ X}( \mathcal{F}, f^*\mathcal{J} \otimes _{\mathcal{O}_ X} \mathcal{F})$.
Comments (0)