Lemma 91.5.3. Let $(f, f')$ be a morphism of first order thickenings as in Situation 91.3.1. Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}_{X'}$-modules and set $\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}_ X$-linear map. Assume that $\mathcal{G}'$ is flat over $S'$ and that $(f, f')$ is a strict morphism of thickenings. The set of lifts of $\varphi $ to an $\mathcal{O}_{X'}$-linear map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$ is, if nonempty, a principal homogeneous space under
\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G} \otimes _{\mathcal{O}_ X} f^*\mathcal{J}) \]
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)