Lemma 91.5.3. Let (f, f') be a morphism of first order thickenings as in Situation 91.3.1. Let \mathcal{F}', \mathcal{G}' be \mathcal{O}_{X'}-modules and set \mathcal{F} = i^*\mathcal{F}' and \mathcal{G} = i^*\mathcal{G}'. Let \varphi : \mathcal{F} \to \mathcal{G} be an \mathcal{O}_ X-linear map. Assume that \mathcal{G}' is flat over S' and that (f, f') is a strict morphism of thickenings. The set of lifts of \varphi to an \mathcal{O}_{X'}-linear map \varphi ' : \mathcal{F}' \to \mathcal{G}' is, if nonempty, a principal homogeneous space under
\mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G} \otimes _{\mathcal{O}_ X} f^*\mathcal{J})
Comments (0)