Lemma 91.5.1. Let $i : (X, \mathcal{O}_ X) \to (X', \mathcal{O}_{X'})$ be a first order thickening of ringed spaces. Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}_{X'}$-modules. Set $\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}_ X$-linear map. The set of lifts of $\varphi $ to an $\mathcal{O}_{X'}$-linear map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$ is, if nonempty, a principal homogeneous space under $\mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{I}\mathcal{G}')$.
Proof. This is a special case of Lemma 91.4.1 but we also give a direct proof. We have short exact sequences of modules
and similarly for $\mathcal{F}'$. Since $\mathcal{I}$ has square zero the $\mathcal{O}_{X'}$-module structure on $\mathcal{I}$ and $\mathcal{I}\mathcal{G}'$ comes from a unique $\mathcal{O}_ X$-module structure. It follows that
The lemma now follows from the exact sequence
see Homology, Lemma 12.5.8. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)