The Stacks project

91.5 Infinitesimal deformations of modules on ringed spaces

Let $i : (X, \mathcal{O}_ X) \to (X', \mathcal{O}_{X'})$ be a first order thickening of ringed spaces. We freely use the notation introduced in Section 91.3. Let $\mathcal{F}'$ be an $\mathcal{O}_{X'}$-module and set $\mathcal{F} = i^*\mathcal{F}'$. In this situation we have a short exact sequence

\[ 0 \to \mathcal{I}\mathcal{F}' \to \mathcal{F}' \to \mathcal{F} \to 0 \]

of $\mathcal{O}_{X'}$-modules. Since $\mathcal{I}^2 = 0$ the $\mathcal{O}_{X'}$-module structure on $\mathcal{I}\mathcal{F}'$ comes from a unique $\mathcal{O}_ X$-module structure. Thus the sequence above is an extension as in (91.4.0.1). As a special case, if $\mathcal{F}' = \mathcal{O}_{X'}$ we have $i^*\mathcal{O}_{X'} = \mathcal{O}_ X$ and $\mathcal{I}\mathcal{O}_{X'} = \mathcal{I}$ and we recover the sequence of structure sheaves

\[ 0 \to \mathcal{I} \to \mathcal{O}_{X'} \to \mathcal{O}_ X \to 0 \]

Lemma 91.5.1. Let $i : (X, \mathcal{O}_ X) \to (X', \mathcal{O}_{X'})$ be a first order thickening of ringed spaces. Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}_{X'}$-modules. Set $\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}_ X$-linear map. The set of lifts of $\varphi $ to an $\mathcal{O}_{X'}$-linear map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$ is, if nonempty, a principal homogeneous space under $\mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{I}\mathcal{G}')$.

Proof. This is a special case of Lemma 91.4.1 but we also give a direct proof. We have short exact sequences of modules

\[ 0 \to \mathcal{I} \to \mathcal{O}_{X'} \to \mathcal{O}_ X \to 0 \quad \text{and}\quad 0 \to \mathcal{I}\mathcal{G}' \to \mathcal{G}' \to \mathcal{G} \to 0 \]

and similarly for $\mathcal{F}'$. Since $\mathcal{I}$ has square zero the $\mathcal{O}_{X'}$-module structure on $\mathcal{I}$ and $\mathcal{I}\mathcal{G}'$ comes from a unique $\mathcal{O}_ X$-module structure. It follows that

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{I}\mathcal{G}') = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{I}\mathcal{G}') \quad \text{and}\quad \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{G}) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G}) \]

The lemma now follows from the exact sequence

\[ 0 \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{I}\mathcal{G}') \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{G}') \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{G}) \]

see Homology, Lemma 12.5.8. $\square$

Lemma 91.5.2. Let $(f, f')$ be a morphism of first order thickenings of ringed spaces as in Situation 91.3.1. Let $\mathcal{F}'$ be an $\mathcal{O}_{X'}$-module and set $\mathcal{F} = i^*\mathcal{F}'$. Assume that $\mathcal{F}$ is flat over $S$ and that $(f, f')$ is a strict morphism of thickenings (Definition 91.3.2). Then the following are equivalent

  1. $\mathcal{F}'$ is flat over $S'$, and

  2. the canonical map $f^*\mathcal{J} \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{I}\mathcal{F}'$ is an isomorphism.

Moreover, in this case the maps

\[ f^*\mathcal{J} \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{I}\mathcal{F}' \]

are isomorphisms.

Proof. The map $f^*\mathcal{J} \to \mathcal{I}$ is surjective as $(f, f')$ is a strict morphism of thickenings. Hence the final statement is a consequence of (2).

Proof of the equivalence of (1) and (2). We may check these conditions at stalks. Let $x \in X \subset X'$ be a point with image $s = f(x) \in S \subset S'$. Set $A' = \mathcal{O}_{S', s}$, $B' = \mathcal{O}_{X', x}$, $A = \mathcal{O}_{S, s}$, and $B = \mathcal{O}_{X, x}$. Then $A = A'/J$ and $B = B'/I$ for some square zero ideals. Since $(f, f')$ is a strict morphism of thickenings we have $I = JB'$. Let $M' = \mathcal{F}'_ x$ and $M = \mathcal{F}_ x$. Then $M'$ is a $B'$-module and $M$ is a $B$-module. Since $\mathcal{F} = i^*\mathcal{F}'$ we see that the kernel of the surjection $M' \to M$ is $IM' = JM'$. Thus we have a short exact sequence

\[ 0 \to JM' \to M' \to M \to 0 \]

Using Sheaves, Lemma 6.26.4 and Modules, Lemma 17.16.1 to identify stalks of pullbacks and tensor products we see that the stalk at $x$ of the canonical map of the lemma is the map

\[ (J \otimes _ A B) \otimes _ B M = J \otimes _ A M = J \otimes _{A'} M' \longrightarrow JM' \]

The assumption that $\mathcal{F}$ is flat over $S$ signifies that $M$ is a flat $A$-module.

Assume (1). Flatness implies $\text{Tor}_1^{A'}(M', A) = 0$ by Algebra, Lemma 10.75.8. This means $J \otimes _{A'} M' \to M'$ is injective by Algebra, Remark 10.75.9. Hence $J \otimes _ A M \to JM'$ is an isomorphism.

Assume (2). Then $J \otimes _{A'} M' \to M'$ is injective. Hence $\text{Tor}_1^{A'}(M', A) = 0$ by Algebra, Remark 10.75.9. Hence $M'$ is flat over $A'$ by Algebra, Lemma 10.99.8. $\square$

Lemma 91.5.3. Let $(f, f')$ be a morphism of first order thickenings as in Situation 91.3.1. Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}_{X'}$-modules and set $\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}_ X$-linear map. Assume that $\mathcal{G}'$ is flat over $S'$ and that $(f, f')$ is a strict morphism of thickenings. The set of lifts of $\varphi $ to an $\mathcal{O}_{X'}$-linear map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$ is, if nonempty, a principal homogeneous space under

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G} \otimes _{\mathcal{O}_ X} f^*\mathcal{J}) \]

Lemma 91.5.4. Let $i : (X, \mathcal{O}_ X) \to (X', \mathcal{O}_{X'})$ be a first order thickening of ringed spaces. Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}_{X'}$-modules and set $\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}_ X$-linear map. There exists an element

\[ o(\varphi ) \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(Li^*\mathcal{F}', \mathcal{I}\mathcal{G}') \]

whose vanishing is a necessary and sufficient condition for the existence of a lift of $\varphi $ to an $\mathcal{O}_{X'}$-linear map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$.

Proof. It is clear from the proof of Lemma 91.5.1 that the vanishing of the boundary of $\varphi $ via the map

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G}) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{G}) \longrightarrow \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{I}\mathcal{G}') \]

is a necessary and sufficient condition for the existence of a lift. We conclude as

\[ \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{I}\mathcal{G}') = \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(Li^*\mathcal{F}', \mathcal{I}\mathcal{G}') \]

the adjointness of $i_* = Ri_*$ and $Li^*$ on the derived category (Cohomology, Lemma 20.28.1). $\square$

Lemma 91.5.5. Let $(f, f')$ be a morphism of first order thickenings as in Situation 91.3.1. Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}_{X'}$-modules and set $\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}_ X$-linear map. Assume that $\mathcal{F}'$ and $\mathcal{G}'$ are flat over $S'$ and that $(f, f')$ is a strict morphism of thickenings. There exists an element

\[ o(\varphi ) \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G} \otimes _{\mathcal{O}_ X} f^*\mathcal{J}) \]

whose vanishing is a necessary and sufficient condition for the existence of a lift of $\varphi $ to an $\mathcal{O}_{X'}$-linear map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$.

First proof. This follows from Lemma 91.5.4 as we claim that under the assumptions of the lemma we have

\[ \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(Li^*\mathcal{F}', \mathcal{I}\mathcal{G}') = \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G} \otimes _{\mathcal{O}_ X} f^*\mathcal{J}) \]

Namely, we have $\mathcal{I}\mathcal{G}' = \mathcal{G} \otimes _{\mathcal{O}_ X} f^*\mathcal{J}$ by Lemma 91.5.2. On the other hand, observe that

\[ H^{-1}(Li^*\mathcal{F}') = \text{Tor}_1^{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{O}_ X) \]

(local computation omitted). Using the short exact sequence

\[ 0 \to \mathcal{I} \to \mathcal{O}_{X'} \to \mathcal{O}_ X \to 0 \]

we see that this $\text{Tor}_1$ is computed by the kernel of the map $\mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{I}\mathcal{F}'$ which is zero by the final assertion of Lemma 91.5.2. Thus $\tau _{\geq -1}Li^*\mathcal{F}' = \mathcal{F}$. On the other hand, we have

\[ \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(Li^*\mathcal{F}', \mathcal{I}\mathcal{G}') = \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\tau _{\geq -1}Li^*\mathcal{F}', \mathcal{I}\mathcal{G}') \]

by the dual of Derived Categories, Lemma 13.16.1. $\square$

Second proof. We can apply Lemma 91.4.2 as follows. Note that $\mathcal{K} = \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F}$ and $\mathcal{L} = \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{G}$ by Lemma 91.5.2, that $c_{\mathcal{F}'} = 1 \otimes 1$ and $c_{\mathcal{G}'} = 1 \otimes 1$ and taking $\psi = 1 \otimes \varphi $ the diagram of the lemma commutes. Thus $o(\varphi ) = o(\varphi , 1 \otimes \varphi )$ works. $\square$

Lemma 91.5.6. Let $(f, f')$ be a morphism of first order thickenings as in Situation 91.3.1. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. Assume $(f, f')$ is a strict morphism of thickenings and $\mathcal{F}$ flat over $S$. If there exists a pair $(\mathcal{F}', \alpha )$ consisting of an $\mathcal{O}_{X'}$-module $\mathcal{F}'$ flat over $S'$ and an isomorphism $\alpha : i^*\mathcal{F}' \to \mathcal{F}$, then the set of isomorphism classes of such pairs is principal homogeneous under $\mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}( \mathcal{F}, \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F})$.

Proof. If we assume there exists one such module, then the canonical map

\[ f^*\mathcal{J} \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F} \]

is an isomorphism by Lemma 91.5.2. Apply Lemma 91.4.3 with $\mathcal{K} = \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F}$ and $c = 1$. By Lemma 91.5.2 the corresponding extensions $\mathcal{F}'$ are all flat over $S'$. $\square$

Lemma 91.5.7. Let $(f, f')$ be a morphism of first order thickenings as in Situation 91.3.1. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. Assume $(f, f')$ is a strict morphism of thickenings and $\mathcal{F}$ flat over $S$. There exists an $\mathcal{O}_{X'}$-module $\mathcal{F}'$ flat over $S'$ with $i^*\mathcal{F}' \cong \mathcal{F}$, if and only if

  1. the canonical map $ f^*\mathcal{J} \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F}$ is an isomorphism, and

  2. the class $o(\mathcal{F}, \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F}, 1) \in \mathop{\mathrm{Ext}}\nolimits ^2_{\mathcal{O}_ X}( \mathcal{F}, \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F})$ of Lemma 91.4.4 is zero.

Proof. This follows immediately from the characterization of $\mathcal{O}_{X'}$-modules flat over $S'$ of Lemma 91.5.2 and Lemma 91.4.4. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08LG. Beware of the difference between the letter 'O' and the digit '0'.