The Stacks project

Lemma 91.5.5. Let $(f, f')$ be a morphism of first order thickenings as in Situation 91.3.1. Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}_{X'}$-modules and set $\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}_ X$-linear map. Assume that $\mathcal{F}'$ and $\mathcal{G}'$ are flat over $S'$ and that $(f, f')$ is a strict morphism of thickenings. There exists an element

\[ o(\varphi ) \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G} \otimes _{\mathcal{O}_ X} f^*\mathcal{J}) \]

whose vanishing is a necessary and sufficient condition for the existence of a lift of $\varphi $ to an $\mathcal{O}_{X'}$-linear map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$.

First proof. This follows from Lemma 91.5.4 as we claim that under the assumptions of the lemma we have

\[ \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(Li^*\mathcal{F}', \mathcal{I}\mathcal{G}') = \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G} \otimes _{\mathcal{O}_ X} f^*\mathcal{J}) \]

Namely, we have $\mathcal{I}\mathcal{G}' = \mathcal{G} \otimes _{\mathcal{O}_ X} f^*\mathcal{J}$ by Lemma 91.5.2. On the other hand, observe that

\[ H^{-1}(Li^*\mathcal{F}') = \text{Tor}_1^{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{O}_ X) \]

(local computation omitted). Using the short exact sequence

\[ 0 \to \mathcal{I} \to \mathcal{O}_{X'} \to \mathcal{O}_ X \to 0 \]

we see that this $\text{Tor}_1$ is computed by the kernel of the map $\mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{I}\mathcal{F}'$ which is zero by the final assertion of Lemma 91.5.2. Thus $\tau _{\geq -1}Li^*\mathcal{F}' = \mathcal{F}$. On the other hand, we have

\[ \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(Li^*\mathcal{F}', \mathcal{I}\mathcal{G}') = \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\tau _{\geq -1}Li^*\mathcal{F}', \mathcal{I}\mathcal{G}') \]

by the dual of Derived Categories, Lemma 13.16.1. $\square$

Second proof. We can apply Lemma 91.4.2 as follows. Note that $\mathcal{K} = \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F}$ and $\mathcal{L} = \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{G}$ by Lemma 91.5.2, that $c_{\mathcal{F}'} = 1 \otimes 1$ and $c_{\mathcal{G}'} = 1 \otimes 1$ and taking $\psi = 1 \otimes \varphi $ the diagram of the lemma commutes. Thus $o(\varphi ) = o(\varphi , 1 \otimes \varphi )$ works. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08LL. Beware of the difference between the letter 'O' and the digit '0'.