Lemma 91.5.6. Let $(f, f')$ be a morphism of first order thickenings as in Situation 91.3.1. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. Assume $(f, f')$ is a strict morphism of thickenings and $\mathcal{F}$ flat over $S$. If there exists a pair $(\mathcal{F}', \alpha )$ consisting of an $\mathcal{O}_{X'}$-module $\mathcal{F}'$ flat over $S'$ and an isomorphism $\alpha : i^*\mathcal{F}' \to \mathcal{F}$, then the set of isomorphism classes of such pairs is principal homogeneous under $\mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}( \mathcal{F}, \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F})$.
Proof. If we assume there exists one such module, then the canonical map
\[ f^*\mathcal{J} \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F} \]
is an isomorphism by Lemma 91.5.2. Apply Lemma 91.4.3 with $\mathcal{K} = \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F}$ and $c = 1$. By Lemma 91.5.2 the corresponding extensions $\mathcal{F}'$ are all flat over $S'$. $\square$
Comments (0)