Lemma 21.20.10. Let f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) be a flat morphism of ringed topoi. If \mathcal{I}^\bullet is a K-injective complex of \mathcal{O}_\mathcal {C}-modules, then f_*\mathcal{I}^\bullet is K-injective as a complex of \mathcal{O}_\mathcal {D}-modules.
Proof. This is true because
\mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{O}_\mathcal {D})}(\mathcal{F}^\bullet , f_*\mathcal{I}^\bullet ) = \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{O}_\mathcal {C})}(f^*\mathcal{F}^\bullet , \mathcal{I}^\bullet )
by Modules on Sites, Lemma 18.13.2 and the fact that f^* is exact as f is assumed to be flat. \square
Comments (0)