Processing math: 100%

The Stacks project

Lemma 21.20.9. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). For L in D(\mathcal{O}_ U) and K in D(\mathcal{O}) we have j_!L \otimes _\mathcal {O}^\mathbf {L} K = j_!(L \otimes _{\mathcal{O}_ U}^\mathbf {L} K|_ U).

Proof. Represent L by a complex of \mathcal{O}_ U-modules and K by a K-flat complexe of \mathcal{O}-modules and apply Modules on Sites, Lemma 18.27.9. Details omitted. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.