Lemma 21.20.9. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). For L in D(\mathcal{O}_ U) and K in D(\mathcal{O}) we have j_!L \otimes _\mathcal {O}^\mathbf {L} K = j_!(L \otimes _{\mathcal{O}_ U}^\mathbf {L} K|_ U).
Proof. Represent L by a complex of \mathcal{O}_ U-modules and K by a K-flat complexe of \mathcal{O}-modules and apply Modules on Sites, Lemma 18.27.9. Details omitted. \square
Comments (0)