The Stacks project

Proposition 60.6.6. Let $A \to B$ be a ring map which identifies local rings. Then there exists a faithfully flat, ind-Zariski ring map $B \to B'$ such that $A \to B'$ is ind-Zariski.

Proof. Let $A \to A_ w$, resp. $B \to B_ w$ be the faithfully flat, ind-Zariski ring map constructed in Lemma 60.5.3 for $A$, resp. $B$. Since $\mathop{\mathrm{Spec}}(B_ w)$ is w-local, there exists a unique factorization $A \to A_ w \to B_ w$ such that $\mathop{\mathrm{Spec}}(B_ w) \to \mathop{\mathrm{Spec}}(A_ w)$ is w-local by Lemma 60.5.5. Note that $A_ w \to B_ w$ identifies local rings, see Lemma 60.3.4. By Lemma 60.6.5 this means $A_ w \to B_ w$ is ind-Zariski. Since $B \to B_ w$ is faithfully flat, ind-Zariski (Lemma 60.5.3) and the composition $A \to B \to B_ w$ is ind-Zariski (Lemma 60.4.3) the proposition is proved. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 097G. Beware of the difference between the letter 'O' and the digit '0'.