Lemma 61.20.2. Let \Lambda be a Noetherian ring. Let I \subset \Lambda be an ideal. Let f : \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) be a morphism of topoi. Then
Rf_* sends D_{comp}(\mathcal{D}, \Lambda ) into D_{comp}(\mathcal{C}, \Lambda ),
the map Rf_* : D_{comp}(\mathcal{D}, \Lambda ) \to D_{comp}(\mathcal{C}, \Lambda ) has a left adjoint Lf_{comp}^* : D_{comp}(\mathcal{C}, \Lambda ) \to D_{comp}(\mathcal{D}, \Lambda ) which is Lf^* followed by derived completion,
Rf_* commutes with derived completion,
for K in D_{comp}(\mathcal{D}, \Lambda ) we have Rf_*K = R\mathop{\mathrm{lim}}\nolimits Rf_*(K \otimes ^\mathbf {L}_\Lambda \underline{\Lambda /I^ n}).
for M in D_{comp}(\mathcal{C}, \Lambda ) we have Lf^*_{comp}M = R\mathop{\mathrm{lim}}\nolimits Lf^*(M \otimes ^\mathbf {L}_\Lambda \underline{\Lambda /I^ n}).
Comments (0)