The Stacks project

Lemma 61.20.2. Let $\Lambda $ be a Noetherian ring. Let $I \subset \Lambda $ be an ideal. Let $f : \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ be a morphism of topoi. Then

  1. $Rf_*$ sends $D_{comp}(\mathcal{D}, \Lambda )$ into $D_{comp}(\mathcal{C}, \Lambda )$,

  2. the map $Rf_* : D_{comp}(\mathcal{D}, \Lambda ) \to D_{comp}(\mathcal{C}, \Lambda )$ has a left adjoint $Lf_{comp}^* : D_{comp}(\mathcal{C}, \Lambda ) \to D_{comp}(\mathcal{D}, \Lambda )$ which is $Lf^*$ followed by derived completion,

  3. $Rf_*$ commutes with derived completion,

  4. for $K$ in $D_{comp}(\mathcal{D}, \Lambda )$ we have $Rf_*K = R\mathop{\mathrm{lim}}\nolimits Rf_*(K \otimes ^\mathbf {L}_\Lambda \underline{\Lambda /I^ n})$.

  5. for $M$ in $D_{comp}(\mathcal{C}, \Lambda )$ we have $Lf^*_{comp}M = R\mathop{\mathrm{lim}}\nolimits Lf^*(M \otimes ^\mathbf {L}_\Lambda \underline{\Lambda /I^ n})$.

Proof. We have seen (1) and (2) in Algebraic and Formal Geometry, Lemma 52.6.18. Part (3) follows from Algebraic and Formal Geometry, Lemma 52.6.19. For (4) let $K$ be derived complete. Then

\[ Rf_*K = Rf_*( R\mathop{\mathrm{lim}}\nolimits K \otimes ^\mathbf {L}_\Lambda \underline{\Lambda /I^ n}) = R\mathop{\mathrm{lim}}\nolimits Rf_*(K \otimes ^\mathbf {L}_\Lambda \underline{\Lambda /I^ n}) \]

the first equality by Lemma 61.20.1 and the second because $Rf_*$ commutes with $R\mathop{\mathrm{lim}}\nolimits $ (Cohomology on Sites, Lemma 21.23.3). This proves (4). To prove (5), by Lemma 61.20.1 we have

\[ Lf_{comp}^*M = R\mathop{\mathrm{lim}}\nolimits ( Lf^*M \otimes _\Lambda ^\mathbf {L} \underline{\Lambda /I^ n}) \]

Since $Lf^*$ commutes with derived tensor product by Cohomology on Sites, Lemma 21.18.4 and since $Lf^*\underline{\Lambda /I^ n} = \underline{\Lambda /I^ n}$ we get (5). $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 099N. Beware of the difference between the letter 'O' and the digit '0'.