Lemma 61.19.7. Let $X$ be a scheme. Let $\mathcal{G}$ be a sheaf of (possibly noncommutative) groups on $X_{\acute{e}tale}$. We have
where $H^1$ is defined as the set of isomorphism classes of torsors (see Cohomology on Sites, Section 21.4).
Lemma 61.19.7. Let $X$ be a scheme. Let $\mathcal{G}$ be a sheaf of (possibly noncommutative) groups on $X_{\acute{e}tale}$. We have
where $H^1$ is defined as the set of isomorphism classes of torsors (see Cohomology on Sites, Section 21.4).
Proof. Since the functor $\epsilon ^{-1}$ is fully faithful by Lemma 61.19.2 it is clear that the map $H^1(X_{\acute{e}tale}, \mathcal{G}) \to H^1(X_{pro\text{-}\acute{e}tale}, \epsilon ^{-1}\mathcal{G})$ is injective. To show surjectivity it suffices to show that any $\epsilon ^{-1}\mathcal{G}$-torsor $\mathcal{F}$ is étale locally trivial. To do this we may assume that $X$ is affine. Thus we reduce to proving surjectivity for $X$ affine.
Choose a covering $\{ U \to X\} $ with (a) $U$ affine, (b) $\mathcal{O}(X) \to \mathcal{O}(U)$ ind-étale, and (c) $\mathcal{F}(U)$ nonempty. We can do this by Proposition 61.9.1 and the fact that standard pro-étale coverings of $X$ are cofinal among all pro-étale coverings of $X$ (Lemma 61.12.5). Write $U = \mathop{\mathrm{lim}}\nolimits U_ i$ as a limit of affine schemes étale over $X$. Pick $s \in \mathcal{F}(U)$. Let $g \in \epsilon ^{-1}\mathcal{G}(U \times _ X U)$ be the unique section such that $g \cdot \text{pr}_1^*s = \text{pr}_2^*s$ in $\mathcal{F}(U \times _ X U)$. Then $g$ satisfies the cocycle condition
in $\epsilon ^{-1}\mathcal{G}(U \times _ X U \times _ X U)$. By Lemma 61.19.3 we have
and
hence we can find an $i$ and an element $g_ i \in \mathcal{G}(U_ i \times _ X U_ i)$ mapping to $g$ satisfying the cocycle condition. The cocycle $g_ i$ then defines a torsor for $\mathcal{G}$ on $X_{\acute{e}tale}$ whose pullback is isomorphic to $\mathcal{F}$ by construction. Some details omitted (namely, the relationship between torsors and 1-cocycles which should be added to the chapter on cohomology on sites). $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #6327 by Owen on
Comment #6431 by Johan on