The Stacks project

Lemma 61.14.3. Let $X$ be a quasi-compact and quasi-separated scheme. The functor $R\Gamma (X, -) : D^+(X_{pro\text{-}\acute{e}tale}) \to D(\textit{Ab})$ commutes with direct sums and homotopy colimits.

Proof. The statement means the following: Suppose we have a family of objects $E_ i$ of $D^+(X_{pro\text{-}\acute{e}tale})$ such that $\bigoplus E_ i$ is an object of $D^+(X_{pro\text{-}\acute{e}tale})$. Then $R\Gamma (X, \bigoplus E_ i) = \bigoplus R\Gamma (X, E_ i)$. To see this choose a hypercovering $K$ of $X$ with $K_ n = \{ U_ n \to X\} $ where $U_ n$ is an affine and weakly contractible scheme, see Lemma 61.14.1. Let $N$ be an integer such that $H^ p(E_ i) = 0$ for $p < N$. Choose a complex of abelian sheaves $\mathcal{E}_ i^\bullet $ representing $E_ i$ with $\mathcal{E}_ i^ p = 0$ for $p < N$. The termwise direct sum $\bigoplus \mathcal{E}_ i^\bullet $ represents $\bigoplus E_ i$ in $D(X_{pro\text{-}\acute{e}tale})$, see Injectives, Lemma 19.13.4. By Lemma 61.14.2 we have

\[ R\Gamma (X, \bigoplus E_ i) = \text{Tot}(s((\bigoplus \mathcal{E}^\bullet _ i)(K))) \]

and

\[ R\Gamma (X, E_ i) = \text{Tot}(s(\mathcal{E}^\bullet _ i(K))) \]

Since each $U_ n$ is quasi-compact we see that

\[ \text{Tot}(s((\bigoplus \mathcal{E}^\bullet _ i)(K))) = \bigoplus \text{Tot}(s(\mathcal{E}^\bullet _ i(K))) \]

by Modules on Sites, Lemma 18.30.3. The statement on homotopy colimits is a formal consequence of the fact that $R\Gamma $ is an exact functor of triangulated categories and the fact (just proved) that it commutes with direct sums. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09A3. Beware of the difference between the letter 'O' and the digit '0'.