Proof.
Proof of (1). Let \mathcal{F} be a sheaf of sets on X_{\acute{e}tale}. There is a canonical map \epsilon ^{-1}f_{{\acute{e}tale}, *}\mathcal{F} \to f_{{pro\text{-}\acute{e}tale}, *}\epsilon ^{-1}\mathcal{F}, see Sites, Section 7.45. To show it is an isomorphism we may work (Zariski) locally on Y, hence we may assume Y is affine. In this case every object of Y_{pro\text{-}\acute{e}tale} has a covering by objects V = \mathop{\mathrm{lim}}\nolimits V_ i which are limits of affine schemes V_ i étale over Y (by Proposition 61.9.1 for example). Evaluating the map \epsilon ^{-1}f_{{\acute{e}tale}, *}\mathcal{F} \to f_{{pro\text{-}\acute{e}tale}, *}\epsilon ^{-1}\mathcal{F} on V we obtain a map
\mathop{\mathrm{colim}}\nolimits \Gamma (X \times _ Y V_ i, \mathcal{F}) \longrightarrow \Gamma (X \times _ Y V, \epsilon ^*\mathcal{F}).
see Lemma 61.19.3 for the left hand side. By Lemma 61.19.3 we have
\Gamma (X \times _ Y V, \epsilon ^*\mathcal{F}) = \Gamma (X \times _ Y V, \mathcal{F})
Hence the result holds by Étale Cohomology, Lemma 59.51.5.
Proof of (2). Arguing in exactly the same manner as above we see that it suffices to show that
\mathop{\mathrm{colim}}\nolimits H^ i_{\acute{e}tale}(X \times _ Y V_ i, \mathcal{F}) \longrightarrow H^ i_{\acute{e}tale}(X \times _ Y V, \mathcal{F})
which follows once more from Étale Cohomology, Lemma 59.51.5.
\square
Comments (0)