Processing math: 100%

The Stacks project

61.23 Functoriality of the pro-étale site

Let f : X \to Y be a morphism of schemes. The functor Y_{pro\text{-}\acute{e}tale}\to X_{pro\text{-}\acute{e}tale}, V \mapsto X \times _ Y V induces a morphism of sites f_{pro\text{-}\acute{e}tale}: X_{pro\text{-}\acute{e}tale}\to Y_{pro\text{-}\acute{e}tale}, see Sites, Proposition 7.14.7. In fact, we obtain a commutative diagram of morphisms of sites

\xymatrix{ X_{pro\text{-}\acute{e}tale}\ar[r]_\epsilon \ar[d]_{f_{pro\text{-}\acute{e}tale}} & X_{\acute{e}tale}\ar[d]^{f_{\acute{e}tale}} \\ Y_{pro\text{-}\acute{e}tale}\ar[r]^\epsilon & Y_{\acute{e}tale}}

where \epsilon is as in Section 61.19. In particular we have \epsilon ^{-1} f_{\acute{e}tale}^{-1} = f_{pro\text{-}\acute{e}tale}^{-1} \epsilon ^{-1}. Here is the corresponding result for pushforward.

Lemma 61.23.1. Let f : X \to Y be a morphism of schemes.

  1. Let \mathcal{F} be a sheaf of sets on X_{\acute{e}tale}. Then we have f_{{pro\text{-}\acute{e}tale}, *}\epsilon ^{-1}\mathcal{F} = \epsilon ^{-1}f_{{\acute{e}tale}, *}\mathcal{F}.

  2. Let \mathcal{F} be an abelian sheaf on X_{\acute{e}tale}. Then we have Rf_{{pro\text{-}\acute{e}tale}, *}\epsilon ^{-1}\mathcal{F} = \epsilon ^{-1}Rf_{{\acute{e}tale}, *}\mathcal{F}.

Proof. Proof of (1). Let \mathcal{F} be a sheaf of sets on X_{\acute{e}tale}. There is a canonical map \epsilon ^{-1}f_{{\acute{e}tale}, *}\mathcal{F} \to f_{{pro\text{-}\acute{e}tale}, *}\epsilon ^{-1}\mathcal{F}, see Sites, Section 7.45. To show it is an isomorphism we may work (Zariski) locally on Y, hence we may assume Y is affine. In this case every object of Y_{pro\text{-}\acute{e}tale} has a covering by objects V = \mathop{\mathrm{lim}}\nolimits V_ i which are limits of affine schemes V_ i étale over Y (by Proposition 61.9.1 for example). Evaluating the map \epsilon ^{-1}f_{{\acute{e}tale}, *}\mathcal{F} \to f_{{pro\text{-}\acute{e}tale}, *}\epsilon ^{-1}\mathcal{F} on V we obtain a map

\mathop{\mathrm{colim}}\nolimits \Gamma (X \times _ Y V_ i, \mathcal{F}) \longrightarrow \Gamma (X \times _ Y V, \epsilon ^*\mathcal{F}).

see Lemma 61.19.3 for the left hand side. By Lemma 61.19.3 we have

\Gamma (X \times _ Y V, \epsilon ^*\mathcal{F}) = \Gamma (X \times _ Y V, \mathcal{F})

Hence the result holds by Étale Cohomology, Lemma 59.51.5.

Proof of (2). Arguing in exactly the same manner as above we see that it suffices to show that

\mathop{\mathrm{colim}}\nolimits H^ i_{\acute{e}tale}(X \times _ Y V_ i, \mathcal{F}) \longrightarrow H^ i_{\acute{e}tale}(X \times _ Y V, \mathcal{F})

which follows once more from Étale Cohomology, Lemma 59.51.5. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.