The Stacks project

Lemma 61.23.1. Let $f : X \to Y$ be a morphism of schemes.

  1. Let $\mathcal{F}$ be a sheaf of sets on $X_{\acute{e}tale}$. Then we have $f_{{pro\text{-}\acute{e}tale}, *}\epsilon ^{-1}\mathcal{F} = \epsilon ^{-1}f_{{\acute{e}tale}, *}\mathcal{F}$.

  2. Let $\mathcal{F}$ be an abelian sheaf on $X_{\acute{e}tale}$. Then we have $Rf_{{pro\text{-}\acute{e}tale}, *}\epsilon ^{-1}\mathcal{F} = \epsilon ^{-1}Rf_{{\acute{e}tale}, *}\mathcal{F}$.

Proof. Proof of (1). Let $\mathcal{F}$ be a sheaf of sets on $X_{\acute{e}tale}$. There is a canonical map $\epsilon ^{-1}f_{{\acute{e}tale}, *}\mathcal{F} \to f_{{pro\text{-}\acute{e}tale}, *}\epsilon ^{-1}\mathcal{F}$, see Sites, Section 7.45. To show it is an isomorphism we may work (Zariski) locally on $Y$, hence we may assume $Y$ is affine. In this case every object of $Y_{pro\text{-}\acute{e}tale}$ has a covering by objects $V = \mathop{\mathrm{lim}}\nolimits V_ i$ which are limits of affine schemes $V_ i$ étale over $Y$ (by Proposition 61.9.1 for example). Evaluating the map $\epsilon ^{-1}f_{{\acute{e}tale}, *}\mathcal{F} \to f_{{pro\text{-}\acute{e}tale}, *}\epsilon ^{-1}\mathcal{F}$ on $V$ we obtain a map

\[ \mathop{\mathrm{colim}}\nolimits \Gamma (X \times _ Y V_ i, \mathcal{F}) \longrightarrow \Gamma (X \times _ Y V, \epsilon ^*\mathcal{F}). \]

see Lemma 61.19.3 for the left hand side. By Lemma 61.19.3 we have

\[ \Gamma (X \times _ Y V, \epsilon ^*\mathcal{F}) = \Gamma (X \times _ Y V, \mathcal{F}) \]

Hence the result holds by Étale Cohomology, Lemma 59.51.5.

Proof of (2). Arguing in exactly the same manner as above we see that it suffices to show that

\[ \mathop{\mathrm{colim}}\nolimits H^ i_{\acute{e}tale}(X \times _ Y V_ i, \mathcal{F}) \longrightarrow H^ i_{\acute{e}tale}(X \times _ Y V, \mathcal{F}) \]

which follows once more from Étale Cohomology, Lemma 59.51.5. $\square$

Comments (1)

Comment #9477 by Lukas Krinner on

I have two small comments on this lemma:

In order to apply Lemma 03Q6 at the end of the proof of (1) we need to be quasi-compact and quasi-separated. \

The last equation in the proof of (1) says: By Lemma 099S we have

To be precise this should be where is the canonical map. Moreover, the used lemma is not 099S but Lemma 0GLZ.

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09A6. Beware of the difference between the letter 'O' and the digit '0'.