The Stacks project

Lemma 61.27.2. Let $X$ be a scheme. Let $\Lambda $ be a Noetherian ring. The functor $\epsilon ^{-1}$ defines an equivalence of categories

\[ \left\{ \begin{matrix} \text{constructible sheaves of} \\ \Lambda \text{-modules on }X_{\acute{e}tale} \\ \end{matrix} \right\} \longleftrightarrow \left\{ \begin{matrix} \text{constructible sheaves of} \\ \Lambda \text{-modules on }X_{pro\text{-}\acute{e}tale} \\ \end{matrix} \right\} \]

between constructible sheaves of $\Lambda $-modules on $X_{\acute{e}tale}$ and constructible sheaves of $\Lambda $-modules on $X_{pro\text{-}\acute{e}tale}$.

Proof. By Lemma 61.19.2 the functor $\epsilon ^{-1}$ is fully faithful and commutes with pullback (restriction) to the strata. Hence $\epsilon ^{-1}$ of a constructible étale sheaf is a constructible pro-étale sheaf. To finish the proof let $\mathcal{F}$ be a constructible sheaf of $\Lambda $-modules on $X_{pro\text{-}\acute{e}tale}$ as in Definition 61.27.1. There is a canonical map

\[ \epsilon ^{-1}\epsilon _*\mathcal{F} \longrightarrow \mathcal{F} \]

We will show this map is an isomorphism. This will prove that $\mathcal{F}$ is in the essential image of $\epsilon ^{-1}$ and finish the proof (details omitted).

To prove this we may assume that $X$ is affine. In this case we have a finite partition $X = \coprod _ i X_ i$ by constructible locally closed strata such that $\mathcal{F}|_{X_ i}$ is locally constant of finite type. Let $U \subset X$ be one of the open strata in the partition and let $Z \subset X$ be the reduced induced structure on the complement. By Lemma 61.26.5 we have a short exact sequence

\[ 0 \to j_!j^{-1}\mathcal{F} \to \mathcal{F} \to i_*i^{-1}\mathcal{F} \to 0 \]

on $X_{pro\text{-}\acute{e}tale}$. Functoriality gives a commutative diagram

\[ \xymatrix{ 0 \ar[r] & \epsilon ^{-1}\epsilon _*j_!j^{-1}\mathcal{F} \ar[r] \ar[d] & \epsilon ^{-1}\epsilon _*\mathcal{F} \ar[r] \ar[d] & \epsilon ^{-1}\epsilon _*i_*i^{-1}\mathcal{F} \ar[r] \ar[d] & 0 \\ 0 \ar[r] & j_!j^{-1}\mathcal{F} \ar[r] & \mathcal{F} \ar[r] & i_*i^{-1}\mathcal{F} \ar[r] & 0 } \]

By induction on the length of the partition we know that on the one hand $\epsilon ^{-1}\epsilon _*i^{-1}\mathcal{F} \to i^{-1}\mathcal{F}$ and $\epsilon ^{-1}\epsilon _*j^{-1}\mathcal{F} \to j^{-1}\mathcal{F}$ are isomorphisms and on the other that $i^{-1}\mathcal{F} = \epsilon ^{-1}\mathcal{A}$ and $j^{-1}\mathcal{F} = \epsilon ^{-1}\mathcal{B}$ for some constructible sheaves of $\Lambda $-modules $\mathcal{A}$ on $Z_{\acute{e}tale}$ and $\mathcal{B}$ on $U_{\acute{e}tale}$. Then

\[ \epsilon ^{-1}\epsilon _*j_!j^{-1}\mathcal{F} = \epsilon ^{-1}\epsilon _*j_!\epsilon ^{-1}\mathcal{B} = \epsilon ^{-1}\epsilon _*\epsilon ^{-1}j_!\mathcal{B} = \epsilon ^{-1}j_!\mathcal{B} = j_!\epsilon ^{-1}\mathcal{B} = j_!j^{-1}\mathcal{F} \]

the second equality by Lemma 61.26.2, the third equality by Lemma 61.19.2, and the fourth equality by Lemma 61.26.2 again. Similarly, we have

\[ \epsilon ^{-1}\epsilon _*i_*i^{-1}\mathcal{F} = \epsilon ^{-1}\epsilon _*i_*\epsilon ^{-1}\mathcal{A} = \epsilon ^{-1}\epsilon _*\epsilon ^{-1}i_*\mathcal{A} = \epsilon ^{-1}i_*\mathcal{A} = i_*\epsilon ^{-1}\mathcal{A} = i_*i^{-1}\mathcal{F} \]

this time using Lemma 61.23.1. By the five lemma we conclude the vertical map in the middle of the big diagram is an isomorphism. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09AK. Beware of the difference between the letter 'O' and the digit '0'.