Lemma 61.19.9. Let $X$ be a scheme. Let $\Lambda $ be a ring. The functor $\epsilon ^{-1}$ defines an equivalence of categories
Proof. Let $\mathcal{F}$ be a locally constant sheaf of $\Lambda $-modules on $X_{pro\text{-}\acute{e}tale}$ of finite presentation. Choose a pro-étale covering $\{ U_ i \to X\} $ such that $\mathcal{F}|_{U_ i}$ is constant, say $\mathcal{F}|_{U_ i} \cong \underline{M_ i}_{U_ i}$. Observe that $U_ i \times _ X U_ j$ is empty if $M_ i$ is not isomorphic to $M_ j$. For each $\Lambda $-module $M$ let $I_ M = \{ i \in I \mid M_ i \cong M\} $. As pro-étale coverings are fpqc coverings and by Descent, Lemma 35.13.6 we see that $U_ M = \bigcup _{i \in I_ M} \mathop{\mathrm{Im}}(U_ i \to X)$ is an open subset of $X$. Then $X = \coprod U_ M$ is a disjoint open covering of $X$. We may replace $X$ by $U_ M$ for some $M$ and assume that $M_ i = M$ for all $i$.
Consider the sheaf $\mathcal{I} = \mathit{Isom}(\underline{M}, \mathcal{F})$. This sheaf is a torsor for $\mathcal{G} = \mathit{Isom}(\underline{M}, \underline{M})$. By Modules on Sites, Lemma 18.43.4 we have $\mathcal{G} = \underline{G}$ where $G = \mathit{Isom}_\Lambda (M, M)$. Since torsors for the étale topology and the pro-étale topology agree by Lemma 61.19.7 it follows that $\mathcal{I}$ has sections étale locally on $X$. Thus $\mathcal{F}$ is étale locally a constant sheaf which is what we had to show. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)