Lemma 61.27.4. Let $X$ be a scheme. Let $\Lambda $ be a Noetherian ring. Let $D_ c(X_{\acute{e}tale}, \Lambda )$, resp. $D_ c(X_{pro\text{-}\acute{e}tale}, \Lambda )$ be the full subcategory of $D(X_{\acute{e}tale}, \Lambda )$, resp. $D(X_{pro\text{-}\acute{e}tale}, \Lambda )$ consisting of those complexes whose cohomology sheaves are constructible sheaves of $\Lambda $-modules. Then

\[ \epsilon ^{-1} : D_ c^+(X_{\acute{e}tale}, \Lambda ) \longrightarrow D_ c^+(X_{pro\text{-}\acute{e}tale}, \Lambda ) \]

is an equivalence of categories.

**Proof.**
The categories $D_ c(X_{\acute{e}tale}, \Lambda )$ and $D_ c(X_{pro\text{-}\acute{e}tale}, \Lambda )$ are strictly full, saturated, triangulated subcategories of $D(X_{\acute{e}tale}, \Lambda )$ and $D(X_{pro\text{-}\acute{e}tale}, \Lambda )$ by Étale Cohomology, Lemma 59.71.6 and Lemma 61.27.3 and Derived Categories, Section 13.17. The statement of the lemma follows by combining Lemmas 61.19.8 and 61.27.2.
$\square$

## Comments (0)