The Stacks project

Lemma 15.76.3. Let $R$ be a ring. Let $I \subset R$ be an ideal. Let $E^\bullet $ be a complex of $R/I$-modules. Let $K$ be an object of $D(R)$. Assume that

  1. $E^\bullet $ is a bounded above complex of projective $R/I$-modules,

  2. $K \otimes _ R^\mathbf {L} R/I$ is represented by $E^\bullet $ in $D(R/I)$, and

  3. $I$ is a nilpotent ideal.

Then there exists a bounded above complex $P^\bullet $ of projective $R$-modules representing $K$ in $D(R)$ such that $P^\bullet \otimes _ R R/I$ is isomorphic to $E^\bullet $.

Proof. We apply Lemma 15.76.2 using the class $\mathcal{P}$ of all projective $R$-modules. Properties (1) and (2) of the lemma are immediate. Property (3) follows from Nakayama's lemma (Algebra, Lemma 10.20.1). Property (4) follows from the fact that we can lift projective $R/I$-modules to projective $R$-modules, see Algebra, Lemma 10.77.5. To see that (5) holds it suffices to show that $K$ is in $D^{-}(R)$. Since we are given that $K \otimes _ R^\mathbf {L} R/I$ is in $D^{-}(R/I)$ because $E^\bullet $ is bounded above, this follows from Lemma 15.67.20. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09AR. Beware of the difference between the letter 'O' and the digit '0'.