15.75 Lifting complexes
Let R be a ring. Let I \subset R be an ideal. The lifting problem we will consider is the following. Suppose given an object K of D(R) and a complex E^\bullet of R/I-modules such that E^\bullet represents K \otimes _ R^\mathbf {L} R/I in D(R). Question: Does there exist a complex of R-modules P^\bullet lifting E^\bullet representing K in D(R)? In general the answer to this question is no, but in good cases something can be done. We first discuss lifting acyclic complexes.
Lemma 15.75.1. Let R be a ring. Let I \subset R be an ideal. Let \mathcal{P} be a class of R-modules. Assume
each P \in \mathcal{P} is a projective R-module,
if P_1 \in \mathcal{P} and P_1 \oplus P_2 \in \mathcal{P}, then P_2 \in \mathcal{P}, and
if f : P_1 \to P_2, P_1, P_2 \in \mathcal{P} is surjective modulo I, then f is surjective.
Then given any bounded above acyclic complex E^\bullet whose terms are of the form P/IP for P \in \mathcal{P} there exists a bounded above acyclic complex P^\bullet whose terms are in \mathcal{P} lifting E^\bullet .
Proof.
Say E^ i = 0 for i > b. Assume given n and a morphism of complexes
\xymatrix{ & & P^ n \ar[r] \ar[d] & P^{n + 1} \ar[r] \ar[d] & \ldots \ar[r] & P^ b \ar[r] \ar[d] & 0 \ar[r] \ar[d] & \ldots \\ \ldots \ar[r] & E^{n - 1} \ar[r] & E^ n \ar[r] & E^{n + 1} \ar[r] & \ldots \ar[r] & E^ b \ar[r] & 0 \ar[r] & \ldots }
with P^ i \in \mathcal{P}, with P^ n \to P^{n + 1} \to \ldots \to P^ b acyclic in degrees \geq n + 1, and with vertical maps inducing isomorphisms P^ i/IP^ i \to E^ i. In this situation one can inductively choose isomorphisms P^ i = Z^ i \oplus Z^{i + 1} such that the maps P^ i \to P^{i + 1} are given by Z^ i \oplus Z^{i + 1} \to Z^{i + 1} \to Z^{i + 1} \oplus Z^{i + 2}. By property (2) and arguing inductively we see that Z^ i \in \mathcal{P}. Choose P^{n - 1} \in \mathcal{P} and an isomorphism P^{n - 1}/IP^{n - 1} \to E^{n - 1}. Since P^{n - 1} is projective and since Z^ n/IZ^ n = \mathop{\mathrm{Im}}(E^{n - 1} \to E^ n), we can lift the map P^{n - 1} \to E^{n - 1} \to E^ n to a map P^{n - 1} \to Z^ n. By property (3) the map P^{n - 1} \to Z^ n is surjective. Thus we obtain an extension of the diagram by adding P^{n - 1} and the maps just constructed to the left of P^ n. Since a diagram of the desired form exists for n > b we conclude by induction on n.
\square
Lemma 15.75.2. Let R be a ring. Let I \subset R be an ideal. Let \mathcal{P} be a class of R-modules. Let K \in D(R) and let E^\bullet be a complex of R/I-modules representing K \otimes _ R^\mathbf {L} R/I. Assume
each P \in \mathcal{P} is a projective R-module,
P_1 \in \mathcal{P} and P_1 \oplus P_2 \in \mathcal{P} if and only if P_1, P_2 \in \mathcal{P},
if f : P_1 \to P_2, P_1, P_2 \in \mathcal{P} is surjective modulo I, then f is surjective,
E^\bullet is bounded above and E^ i is of the form P/IP for P \in \mathcal{P}, and
K can be represented by a bounded above complex whose terms are in \mathcal{P}.
Then there exists a bounded above complex P^\bullet whose terms are in \mathcal{P} with P^\bullet /IP^\bullet isomorphic to E^\bullet and representing K in D(R).
Proof.
By assumption (5) we can represent K by a bounded above complex K^\bullet whose terms are in \mathcal{P}. Then K \otimes _ R^\mathbf {L} R/I is represented by K^\bullet /IK^\bullet . Since E^\bullet is a bounded above complex of projective R/I-modules by (4), we can choose a quasi-isomorphism \delta : E^\bullet \to K^\bullet /IK^\bullet (Derived Categories, Lemma 13.19.8). Let C^\bullet be cone on \delta (Derived Categories, Definition 13.9.1). The module C^ i is the direct sum K^ i/IK^ i \oplus E^{i + 1} hence is of the form P/IP for some P \in \mathcal{P} as (2) says in particular that \mathcal{P} is preserved under taking sums. Since C^\bullet is acyclic, we can apply Lemma 15.75.1 and find a acyclic lift A^\bullet of C^\bullet . The complex A^\bullet is bounded above and has terms in \mathcal{P}. In
\xymatrix{ K^\bullet \ar@{..>}[r] \ar[d] & A^\bullet \ar[d] \\ K^\bullet /IK^\bullet \ar[r] & C^\bullet \ar[r] & E^\bullet [1] }
we can find the dotted arrow making the diagram commute by Derived Categories, Lemma 13.19.6. We will show below that it follows from (1), (2), (3) that K^ i \to A^ i is the inclusion of a direct summand for every i. By property (2) we see that P^ i = \mathop{\mathrm{Coker}}(K^ i \to A^ i) is in \mathcal{P}. Thus we can take P^\bullet = \mathop{\mathrm{Coker}}(K^\bullet \to A^\bullet )[-1] to conclude.
To finish the proof we have to show the following: Let f : P_1 \to P_2, P_1, P_2 \in \mathcal{P} and P_1/IP_1 \to P_2/IP_2 is split injective with cokernel of the form P_3/IP_3 for some P_3 \in \mathcal{P}, then f is split injective. Write E_ i = P_ i/IP_ i. Then E_2 = E_1 \oplus E_3. Since P_2 is projective we can choose a map g : P_2 \to P_3 lifting the map E_2 \to E_3. By condition (3) the map g is surjective, hence split as P_3 is projective. Set P_1' = \mathop{\mathrm{Ker}}(g) and choose a splitting P_2 = P'_1 \oplus P_3. Then P'_1 \in \mathcal{P} by (2). We do not know that g \circ f = 0, but we can consider the map
P_1 \xrightarrow {f} P_2 \xrightarrow {projection} P'_1
The composition modulo I is an isomorphism. Since P'_1 is projective we can split P_1 = T \oplus P'_1. If T = 0, then we are done, because then P_2 \to P'_1 is a splitting of f. We see that T \in \mathcal{P} by (2). Calculating modulo I we see that T/IT = 0. Since 0 \in \mathcal{P} (as the summand of any P in \mathcal{P}) we see the map 0 \to T is surjective and we conclude that T = 0 as desired.
\square
Lemma 15.75.3. Let R be a ring. Let I \subset R be an ideal. Let E^\bullet be a complex of R/I-modules. Let K be an object of D(R). Assume that
E^\bullet is a bounded above complex of projective R/I-modules,
K \otimes _ R^\mathbf {L} R/I is represented by E^\bullet in D(R/I), and
I is a nilpotent ideal.
Then there exists a bounded above complex P^\bullet of projective R-modules representing K in D(R) such that P^\bullet \otimes _ R R/I is isomorphic to E^\bullet .
Proof.
We apply Lemma 15.75.2 using the class \mathcal{P} of all projective R-modules. Properties (1) and (2) of the lemma are immediate. Property (3) follows from Nakayama's lemma (Algebra, Lemma 10.20.1). Property (4) follows from the fact that we can lift projective R/I-modules to projective R-modules, see Algebra, Lemma 10.77.5. To see that (5) holds it suffices to show that K is in D^{-}(R). We are given that K \otimes _ R^\mathbf {L} R/I is in D^{-}(R/I) (because E^\bullet is bounded above). We will show by induction on n that K \otimes _ R^\mathbf {L} R/I^ n is in D^{-}(R/I^ n). This will finish the proof because I being nilpotent exactly means that I^ n = 0 for some n. We may represent K by a K-flat complex K^\bullet with flat terms (Lemma 15.59.10). Then derived tensor products are represented by usual tensor products. Thus we consider the exact sequence
0 \to K^\bullet \otimes _ R I^ n/I^{n + 1} \to K^\bullet \otimes _ R R/I^{n + 1} \to K^\bullet \otimes _ R R/I^ n \to 0
Thus the cohomology of K \otimes _ R^\mathbf {L} R/I^{n + 1} sits in a long exact sequence with the cohomology of K \otimes _ R^\mathbf {L} R/I^ n and the cohomology of
K \otimes _ R^\mathbf {L} I^ n/I^{n + 1} = K \otimes _ R^\mathbf {L} R/I \otimes _{R/I}^\mathbf {L} I^ n/I^{n + 1}
The first cohomologies vanish above a certain degree by induction assumption and the second cohomologies vanish above a certain degree because K^\bullet \otimes _ R^\mathbf {L} R/I is bounded above and I^ n/I^{n + 1} is in degree 0.
\square
Lemma 15.75.4. Let R' \to R be a surjective ring map whose kernel is a nilpotent ideal. Let K' \in D(R') and set K = K' \otimes _{R'}^\mathbf {L} R. Then K is pseudo-coherent if and only if K' is pseudo-coherent.
Proof.
One direction follows from Lemma 15.64.12. For the other direction, assume K is pseudo-coherent. Then by Lemma 15.64.5 we can represent K by a bounded above complex E^\bullet of finite free R-modules. By Lemma 15.75.3 we can represent K' by a bounded above complex P^\bullet of projective R'-modules such that P^ n \otimes _{R'} R = E^ n. By Nakayama's lemma we see that P^ n is finite free and we conclude that K' is pseudo-coherent as well.
\square
Lemma 15.75.5. Let R be a ring. Let I \subset R be an ideal. Let E^\bullet be a complex of R/I-modules. Let K be an object of D(R). Assume that
E^\bullet is a bounded above complex of finite stably free R/I-modules,
K \otimes _ R^\mathbf {L} R/I is represented by E^\bullet in D(R/I),
K^\bullet is pseudo-coherent, and
every element of 1 + I is invertible.
Then there exists a bounded above complex P^\bullet of finite stably free R-modules representing K in D(R) such that P^\bullet \otimes _ R R/I is isomorphic to E^\bullet . Moreover, if E^ i is free, then P^ i is free.
Proof.
We apply Lemma 15.75.2 using the class \mathcal{P} of all finite stably free R-modules. Property (1) of the lemma is immediate. Property (2) follows from Lemma 15.3.2. Property (3) follows from Nakayama's lemma (Algebra, Lemma 10.20.1). Property (4) follows from the fact that we can lift finite stably free R/I-modules to finite stably free R-modules, see Lemma 15.3.3. Part (5) holds because a pseudo-coherent complex can be represented by a bounded above complex of finite free R-modules. The final assertion of the lemma follows from Lemma 15.3.5.
\square
Lemma 15.75.6. Let (R, \mathfrak m, \kappa ) be a local ring. Let K \in D(R) be pseudo-coherent. Set d_ i = \dim _\kappa H^ i(K \otimes _ R^\mathbf {L} \kappa ). Then d_ i < \infty and for some b \in \mathbf{Z} we have d_ i = 0 for i > b. Then there exists a complex
\ldots \to R^{\oplus d_{b - 2}} \to R^{\oplus d_{b - 1}} \to R^{\oplus d_ b} \to 0 \to \ldots
representing K in D(R). Moreover, this complex is unique up to isomorphism(!).
Proof.
Observe that K \otimes _ R^\mathbf {L} \kappa is pseudo-coherent as an object of D(\kappa ), see Lemma 15.64.12. Hence the cohomology spaces are finite dimensional and vanish above some cutoff. Every object of D(\kappa ) is isomorphic in D(\kappa ) to a complex E^\bullet with zero differentials. In particular E^ i \cong \kappa ^{\oplus d_ i} is finite free. Applying Lemma 15.75.5 we obtain the existence.
If we have two complexes F^\bullet and G^\bullet with F^ i and G^ i free of rank d_ i representing K. Then we may choose a map of complexes \beta : F^\bullet \to G^\bullet representing the isomorphism F^\bullet \cong K \cong G^\bullet , see Derived Categories, Lemma 13.19.8. The induced map of complexes \beta \otimes 1 : F^\bullet \otimes _ R^\mathbf {L} \kappa \to G^\bullet \otimes _ R^\mathbf {L} \kappa must be an isomorphism of complexes as the differentials in F^\bullet \otimes _ R^\mathbf {L} \kappa and G^\bullet \otimes _ R^\mathbf {L} \kappa are zero. Thus \beta ^ i : F^ i \to G^ i is a map of finite free R-modules whose reduction modulo \mathfrak m is an isomorphism. Hence \beta ^ i is an isomorphism and we win.
\square
Lemma 15.75.7. Let R be a ring. Let \mathfrak p \subset R be a prime. Let K \in D(R) be perfect. Set d_ i = \dim _{\kappa (\mathfrak p)} H^ i(K \otimes _ R^\mathbf {L} \kappa (\mathfrak p)). Then d_ i < \infty and only a finite number are nonzero. Then there exists an f \in R, f \not\in \mathfrak p and a complex
\ldots \to 0 \to R_ f^{\oplus d_ a} \to R_ f^{\oplus d_{a + 1}} \to \ldots \to R_ f^{\oplus d_{b - 1}} \to R_ f^{\oplus d_ b} \to 0 \to \ldots
representing K \otimes _ R^\mathbf {L} R_ f in D(R_ f).
Proof.
Observe that K \otimes _ R^\mathbf {L} \kappa (\mathfrak p) is perfect as an object of D(\kappa (\mathfrak p)), see Lemma 15.74.9. Hence only a finite number of d_ i are nonzero and they are all finite. Applying Lemma 15.75.6 we get a complex representing K having the desired shape over the local ring R_\mathfrak p. We have R_\mathfrak p = \mathop{\mathrm{colim}}\nolimits R_ f for f \in R, f \not\in \mathfrak p (Algebra, Lemma 10.9.9). We conclude by Lemma 15.74.17. Some details omitted.
\square
Lemma 15.75.8. Let R be a ring. Let \mathfrak p \subset R be a prime. Let M^\bullet and N^\bullet be bounded complexes of finite projective R-modules representing the same object of D(R). Then there exists an f \in R, f \not\in \mathfrak p such that there is an isomorphism (!) of complexes
M^\bullet _ f \oplus P^\bullet \cong N^\bullet _ f \oplus Q^\bullet
where P^\bullet and Q^\bullet are finite direct sums of trivial complexes, i.e., complexes of the form the form \ldots \to 0 \to R_ f \xrightarrow {1} R_ f \to 0 \to \ldots (placed in arbitrary degrees).
Proof.
If we have an isomorphism of the type described over the localization R_\mathfrak p, then using that R_\mathfrak p = \mathop{\mathrm{colim}}\nolimits R_ f (Algebra, Lemma 10.9.9) we can descend the isomorphism to an isomorphism over R_ f for some f. Thus we may assume R is local and \mathfrak p is the maximal ideal. In this case the result follows from the uniqueness of a “minimal” complex representing a perfect object, see Lemma 15.75.6, and the fact that any complex is a direct sum of a trivial complex and a minimal one (Algebra, Lemma 10.102.2).
\square
Lemma 15.75.9. Let R be a ring. Let I \subset R be an ideal. Let E^\bullet be a complex of R/I-modules. Let K be an object of D(R). Assume that
E^\bullet is a bounded above complex of finite projective R/I-modules,
K \otimes _ R^\mathbf {L} R/I is represented by E^\bullet in D(R/I),
K is pseudo-coherent, and
(R, I) is a henselian pair.
Then there exists a bounded above complex P^\bullet of finite projective R-modules representing K in D(R) such that P^\bullet \otimes _ R R/I is isomorphic to E^\bullet . Moreover, if E^ i is free, then P^ i is free.
Proof.
We apply Lemma 15.75.2 using the class \mathcal{P} of all finite projective R-modules. Properties (1) and (2) of the lemma are immediate. Property (3) follows from Nakayama's lemma (Algebra, Lemma 10.20.1). Property (4) follows from the fact that we can lift finite projective R/I-modules to finite projective R-modules, see Lemma 15.13.1. Property (5) holds because a pseudo-coherent complex can be represented by a bounded above complex of finite free R-modules. Thus Lemma 15.75.2 applies and we find P^\bullet as desired. The final assertion of the lemma follows from Lemma 15.3.5.
\square
Comments (0)