The Stacks project

15.76 Splitting complexes

In this section we discuss conditions which imply an object of the derived category of a ring is a direct sum of its truncations. Our method is to use the following lemma (under suitable hypotheses) to split the canonical distinguished triangles

\[ \tau _{\leq i}K \to K \to \tau _{\geq i + 1}K \to (\tau _{\leq i}K)[1] \]

in $D(R)$, see Derived Categories, Remark 13.12.4.

Lemma 15.76.1. Let $R$ be a ring. Let $K$ and $L$ be objects of $D(R)$. Assume $L$ has projective-amplitude in $[a, b]$, for example if $L$ is perfect of tor-amplitude in $[a, b]$.

  1. If $H^ i(K) = 0$ for $i \geq a$, then $\mathop{\mathrm{Hom}}\nolimits _{D(R)}(L, K) = 0$.

  2. If $H^ i(K) = 0$ for $i \geq a + 1$, then given any distinguished triangle $K \to M \to L \to K[1]$ there is an isomorphism $M \cong K \oplus L$ in $D(R)$ compatible with the maps in the distinguished triangle.

  3. If $H^ i(K) = 0$ for $i \geq a$, then the isomorphism in (2) exists and is unique.

Proof. The assumption that $L$ has projective-amplitude in $[a, b]$ means we can represent $L$ by a complex $L^\bullet $ of projective $R$-modules with $L^ i = 0$ for $i \not\in [a, b]$, see Definition 15.68.1. If $L$ is perfect of tor-amplitude in $[a, b]$, then we can represent $L$ by a complex $L^\bullet $ of finite projective $R$-modules with $L^ i = 0$ for $i \not\in [a, b]$, see Lemma 15.74.2. If $H^ i(K) = 0$ for $i \geq a$, then $K$ is quasi-isomorphic to $\tau _{\leq a - 1}K$. Hence we can represent $K$ by a complex $K^\bullet $ of $R$-modules with $K^ i = 0$ for $i \geq a$. Then we obtain

\[ \mathop{\mathrm{Hom}}\nolimits _{D(R)}(L, K) = \mathop{\mathrm{Hom}}\nolimits _{K(R)}(L^\bullet , K^\bullet ) = 0 \]

by Derived Categories, Lemma 13.19.8. This proves (1). Under the hypotheses of (2) we see that $\mathop{\mathrm{Hom}}\nolimits _{D(R)}(L, K[1]) = 0$ by (1), hence the distinguished triangle is split by Derived Categories, Lemma 13.4.11. The uniqueness of (3) follows from (1). $\square$

Lemma 15.76.2. Let $R$ be a ring. Let $\mathfrak p \subset R$ be a prime ideal. Let $K^\bullet $ be a pseudo-coherent complex of $R$-modules. Assume that for some $i \in \mathbf{Z}$ the map

\[ H^ i(K^\bullet ) \otimes _ R \kappa (\mathfrak p) \longrightarrow H^ i(K^\bullet \otimes _ R^{\mathbf{L}} \kappa (\mathfrak p)) \]

is surjective. Then there exists an $f \in R$, $f \not\in \mathfrak p$ such that $\tau _{\geq i + 1}(K^\bullet \otimes _ R R_ f)$ is a perfect object of $D(R_ f)$ with tor amplitude in $[i + 1, \infty ]$ and a canonical isomorphism

\[ K^\bullet \otimes _ R R_ f \cong \tau _{\leq i}(K^\bullet \otimes _ R R_ f) \oplus \tau _{\geq i + 1}(K^\bullet \otimes _ R R_ f) \]

in $D(R_ f)$.

Proof. In this proof all tensor products are over $R$ and we write $\kappa = \kappa (\mathfrak p)$. We may assume that $K^\bullet $ is a bounded above complex of finite free $R$-modules. Let us inspect what is happening in degree $i$:

\[ \ldots \to K^{i - 1} \xrightarrow {d^{i - 1}} K^ i \xrightarrow {d^ i} K^{i + 1} \to \ldots \]

Let $0 \subset V \subset W \subset K^ i \otimes \kappa $ be defined by the formulas

\[ V = \mathop{\mathrm{Im}}\left( K^{i - 1} \otimes \kappa \to K^ i \otimes \kappa \right) \quad \text{and}\quad W = \mathop{\mathrm{Ker}}\left( K^ i \otimes \kappa \to K^{i + 1} \otimes \kappa \right) \]

Set $\dim (V) = r$, $\dim (W/V) = s$, and $\dim (K^ i \otimes \kappa /W) = t$. We can pick $x_1, \ldots , x_ r \in K^{i - 1}$ which map by $d^{i - 1}$ to a basis of $V$. By our assumption we can pick $y_1, \ldots , y_ s \in \mathop{\mathrm{Ker}}(d^ i)$ mapping to a basis of $W/V$. Finally, choose $z_1, \ldots , z_ t \in K^ i$ mapping to a basis of $K^ i \otimes \kappa /W$. Then we see that the elements $d^ i(z_1), \ldots , d^ i(z_ t) \in K^{i + 1}$ are linearly independent in $K^{i + 1} \otimes _ R \kappa $. By Algebra, Lemma 10.79.4 we may after replacing $R$ by $R_ f$ for some $f \in R$, $f \not\in \mathfrak p$ assume that

  1. $d^ i(x_ a), y_ b, z_ c$ is an $R$-basis of $K^ i$,

  2. $d^ i(z_1), \ldots , d^ i(z_ t)$ are $R$-linearly independent in $K^{i + 1}$, and

  3. the quotient $E^{i + 1} = K^{i + 1}/\sum Rd^ i(z_ c)$ is finite projective.

Since $d^ i$ annihilates $d^{i - 1}(x_ a)$ and $y_ b$, we deduce from condition (2) that $E^{i + 1} = \mathop{\mathrm{Coker}}(d^ i : K^ i \to K^{i + 1})$. Thus we see that

\[ \tau _{\geq i + 1}K^\bullet = (\ldots \to 0 \to E^{i + 1} \to K^{i + 2} \to \ldots ) \]

is a bounded complex of finite projective modules sitting in degrees $[i + 1, b]$ for some $b$. Thus $\tau _{\geq i + 1}K^\bullet $ is perfect of amplitude $[i + 1, b]$. Since $\tau _{\leq i}K^\bullet $ has no cohomology in degrees $> i$, we may apply Lemma 15.76.1 to the distinguished triangle

\[ \tau _{\leq i}K^\bullet \to K^\bullet \to \tau _{\geq i + 1}K^\bullet \to (\tau _{\leq i}K^\bullet )[1] \]

(Derived Categories, Remark 13.12.4) to conclude. $\square$

Lemma 15.76.3. Let $R$ be a ring. Let $\mathfrak p \subset R$ be a prime ideal. Let $K^\bullet $ be a pseudo-coherent complex of $R$-modules. Assume that for some $i \in \mathbf{Z}$ the maps

\[ H^ i(K^\bullet ) \otimes _ R \kappa (\mathfrak p) \longrightarrow H^ i(K^\bullet \otimes _ R^{\mathbf{L}} \kappa (\mathfrak p)) \quad \text{and}\quad H^{i - 1}(K^\bullet ) \otimes _ R \kappa (\mathfrak p) \longrightarrow H^{i - 1}(K^\bullet \otimes _ R^{\mathbf{L}} \kappa (\mathfrak p)) \]

are surjective. Then there exists an $f \in R$, $f \not\in \mathfrak p$ such that

  1. $\tau _{\geq i + 1}(K^\bullet \otimes _ R R_ f)$ is a perfect object of $D(R_ f)$ with tor amplitude in $[i + 1, \infty ]$,

  2. $H^ i(K^\bullet )_ f$ is a finite free $R_ f$-module, and

  3. there is a canonical direct sum decomposition

    \[ K^\bullet \otimes _ R R_ f \cong \tau _{\leq i - 1}(K^\bullet \otimes _ R R_ f) \oplus H^ i(K^\bullet )_ f[-i] \oplus \tau _{\geq i + 1}(K^\bullet \otimes _ R R_ f) \]

    in $D(R_ f)$.

Proof. We get (1) from Lemma 15.76.2 as well as a splitting $K^\bullet \otimes _ R R_ f = \tau _{\leq i}K^\bullet \otimes _ R R_ f \oplus \tau _{\geq i + 1}K^\bullet \otimes _ R R_ f$ in $D(R_ f)$. Applying Lemma 15.76.2 once more to $\tau _{\leq i}K^\bullet \otimes _ R R_ f$ we obtain (after suitably choosing $f$) a splitting $\tau _{\leq i}K^\bullet \otimes _ R R_ f = \tau _{\leq i - 1}K^\bullet \otimes _ R R_ f \oplus H^ i(K^\bullet )_ f$ in $D(R_ f)$ as well as the conclusion that $H^ i(K)_ f$ is a flat perfect module, i.e., finite projective. $\square$

Lemma 15.76.4. Let $R$ be a ring. Let $\mathfrak p \subset R$ be a prime ideal. Let $i \in \mathbf{Z}$. Let $K^\bullet $ be a pseudo-coherent complex of $R$-modules such that $H^ i(K^\bullet \otimes _ R^{\mathbf{L}} \kappa (\mathfrak p)) = 0$. Then there exists an $f \in R$, $f \not\in \mathfrak p$ and a canonical direct sum decomposition

\[ K^\bullet \otimes _ R R_ f = \tau _{\geq i + 1}(K^\bullet \otimes _ R R_ f) \oplus \tau _{\leq i - 1}(K^\bullet \otimes _ R R_ f) \]

in $D(R_ f)$ with $\tau _{\geq i + 1}(K^\bullet \otimes _ R R_ f)$ a perfect complex with tor-amplitude in $[i + 1, \infty ]$.

Proof. This is an often used special case of Lemma 15.76.2. A direct proof is as follows. We may assume that $K^\bullet $ is a bounded above complex of finite free $R$-modules. Let us inspect what is happening in degree $i$:

\[ \ldots \to K^{i - 2} \to R^{\oplus l} \to R^{\oplus m} \to R^{\oplus n} \to K^{i + 2} \to \ldots \]

Let $A$ be the $m \times l$ matrix corresponding to $K^{i - 1} \to K^ i$ and let $B$ be the $n \times m$ matrix corresponding to $K^ i \to K^{i + 1}$. The assumption is that $A \bmod \mathfrak p$ has rank $r$ and that $B \bmod \mathfrak p$ has rank $m - r$. In other words, there is some $r \times r$ minor $a$ of $A$ which is not in $\mathfrak p$ and there is some $(m - r) \times (m - r)$-minor $b$ of $B$ which is not in $\mathfrak p$. Set $f = ab$. Then after inverting $f$ we can find direct sum decompositions $K^{i - 1} = R^{\oplus l - r} \oplus R^{\oplus r}$, $K^ i = R^{\oplus r} \oplus R^{\oplus m - r}$, $K^{i + 1} = R^{\oplus m - r} \oplus R^{\oplus n - m + r}$ such that the module map $K^{i - 1} \to K^ i$ kills of $R^{\oplus l - r}$ and induces an isomorphism of $R^{\oplus r}$ onto the corresponding summand of $K^ i$ and such that the module map $K^ i \to K^{i + 1}$ kills of $R^{\oplus r}$ and induces an isomorphism of $R^{\oplus m - r}$ onto the corresponding summand of $K^{i + 1}$. Thus $K^\bullet $ becomes quasi-isomorphic to

\[ \ldots \to K^{i - 2} \to R^{\oplus l - r} \to 0 \to R^{\oplus n - m + r} \to K^{i + 2} \to \ldots \]

and everything is clear. $\square$

Lemma 15.76.5. Let $R$ be a ring. Let $K \in D^-(R)$. Let $a \in \mathbf{Z}$. Assume that for any injective $R$-module map $M \to M'$ the map $\mathop{\mathrm{Ext}}\nolimits ^{-a}_ R(K, M) \to \mathop{\mathrm{Ext}}\nolimits ^{-a}_ R(K, M')$ is injective. Then there is a unique direct sum decomposition $K \cong \tau _{\leq a}K \oplus \tau _{\geq a + 1}K$ and $\tau _{\geq a + 1}K$ has projective-amplitude in $[a + 1, b]$ for some $b$.

Proof. Consider the distinguished triangle

\[ \tau _{\leq a}K \to K \to \tau _{\geq a + 1}K \to (\tau _{\leq a}K)[1] \]

in $D(R)$, see Derived Categories, Remark 13.12.4. Observe that $\mathop{\mathrm{Ext}}\nolimits ^{-a}_ R(\tau _{\leq a}K, M) = \mathop{\mathrm{Hom}}\nolimits _ R(H^ a(K), M)$ and $\mathop{\mathrm{Ext}}\nolimits ^{-a - 1}_ R(\tau _{\leq a}K, M) = 0$, see Derived Categories, Lemma 13.27.3. Thus the long exact sequence of $\mathop{\mathrm{Ext}}\nolimits $ gives an exact sequence

\[ 0 \to \mathop{\mathrm{Ext}}\nolimits ^{-a}_ R(\tau _{\geq a + 1}K, M) \to \mathop{\mathrm{Ext}}\nolimits ^{-a}_ R(K, M) \to \mathop{\mathrm{Hom}}\nolimits _ R(H^ a(K), M) \]

functorial in the $R$-module $M$. Now if $I$ is an injective $R$-module, then $\mathop{\mathrm{Ext}}\nolimits ^{-a}_ R(\tau _{\geq a + 1}K, I) = 0$ for example by Derived Categories, Lemma 13.27.2. Since every module injects into an injective module, we conclude that $\mathop{\mathrm{Ext}}\nolimits ^{-a}_ R(\tau _{\geq a + 1}K, M) = 0$ for every $R$-module $M$. By Lemma 15.68.2 we conclude that $\tau _{\geq a + 1}K$ has projective-amplitude in $[a + 1, b]$ for some $b$ (this is where we use that $K$ is bounded above). We obtain the splitting by Lemma 15.76.1. $\square$

Lemma 15.76.6. Let $R$ be a ring. Let $K \in D^-(R)$. Let $a \in \mathbf{Z}$. Assume $\mathop{\mathrm{Ext}}\nolimits ^{-a}_ R(K, M) = 0$ for any $R$-module $M$. Then there is a unique direct sum decomposition $K \cong \tau _{\leq a - 1}K \oplus \tau _{\geq a + 1}K$ and $\tau _{\geq a + 1}K$ has projective-amplitude in $[a + 1, b]$ for some $b$.

Proof. By Lemma 15.76.5 we have a direct sum decomposition $K \cong \tau _{\leq a}K \oplus \tau _{\geq a + 1}K$ and $\tau _{\geq a + 1}K$ has projective-amplitude in $[a + 1, b]$ for some $b$. Clearly, we must have $H^ a(K) = 0$ and we conclude that $\tau _{\leq a}K = \tau _{\leq a - 1}K$ in $D(R)$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BCF. Beware of the difference between the letter 'O' and the digit '0'.