Lemma 15.76.5. Let $R$ be a ring. Let $K \in D^-(R)$. Let $a \in \mathbf{Z}$. Assume that for any injective $R$-module map $M \to M'$ the map $\mathop{\mathrm{Ext}}\nolimits ^{-a}_ R(K, M) \to \mathop{\mathrm{Ext}}\nolimits ^{-a}_ R(K, M')$ is injective. Then there is a unique direct sum decomposition $K \cong \tau _{\leq a}K \oplus \tau _{\geq a + 1}K$ and $\tau _{\geq a + 1}K$ has projective-amplitude in $[a + 1, b]$ for some $b$.
Proof. Consider the distinguished triangle
in $D(R)$, see Derived Categories, Remark 13.12.4. Observe that $\mathop{\mathrm{Ext}}\nolimits ^{-a}_ R(\tau _{\leq a}K, M) = \mathop{\mathrm{Hom}}\nolimits _ R(H^ a(K), M)$ and $\mathop{\mathrm{Ext}}\nolimits ^{-a - 1}_ R(\tau _{\leq a}K, M) = 0$, see Derived Categories, Lemma 13.27.3. Thus the long exact sequence of $\mathop{\mathrm{Ext}}\nolimits $ gives an exact sequence
functorial in the $R$-module $M$. Now if $I$ is an injective $R$-module, then $\mathop{\mathrm{Ext}}\nolimits ^{-a}_ R(\tau _{\geq a + 1}K, I) = 0$ for example by Derived Categories, Lemma 13.27.2. Since every module injects into an injective module, we conclude that $\mathop{\mathrm{Ext}}\nolimits ^{-a}_ R(\tau _{\geq a + 1}K, M) = 0$ for every $R$-module $M$. By Lemma 15.68.2 we conclude that $\tau _{\geq a + 1}K$ has projective-amplitude in $[a + 1, b]$ for some $b$ (this is where we use that $K$ is bounded above). We obtain the splitting by Lemma 15.76.1. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)