The Stacks project

Lemma 15.76.1. Let $R$ be a ring. Let $K$ and $L$ be objects of $D(R)$. Assume $L$ has projective-amplitude in $[a, b]$, for example if $L$ is perfect of tor-amplitude in $[a, b]$.

  1. If $H^ i(K) = 0$ for $i \geq a$, then $\mathop{\mathrm{Hom}}\nolimits _{D(R)}(L, K) = 0$.

  2. If $H^ i(K) = 0$ for $i \geq a + 1$, then given any distinguished triangle $K \to M \to L \to K[1]$ there is an isomorphism $M \cong K \oplus L$ in $D(R)$ compatible with the maps in the distinguished triangle.

  3. If $H^ i(K) = 0$ for $i \geq a$, then the isomorphism in (2) exists and is unique.

Proof. The assumption that $L$ has projective-amplitude in $[a, b]$ means we can represent $L$ by a complex $L^\bullet $ of projective $R$-modules with $L^ i = 0$ for $i \not\in [a, b]$, see Definition 15.68.1. If $L$ is perfect of tor-amplitude in $[a, b]$, then we can represent $L$ by a complex $L^\bullet $ of finite projective $R$-modules with $L^ i = 0$ for $i \not\in [a, b]$, see Lemma 15.74.2. If $H^ i(K) = 0$ for $i \geq a$, then $K$ is quasi-isomorphic to $\tau _{\leq a - 1}K$. Hence we can represent $K$ by a complex $K^\bullet $ of $R$-modules with $K^ i = 0$ for $i \geq a$. Then we obtain

\[ \mathop{\mathrm{Hom}}\nolimits _{D(R)}(L, K) = \mathop{\mathrm{Hom}}\nolimits _{K(R)}(L^\bullet , K^\bullet ) = 0 \]

by Derived Categories, Lemma 13.19.8. This proves (1). Under the hypotheses of (2) we see that $\mathop{\mathrm{Hom}}\nolimits _{D(R)}(L, K[1]) = 0$ by (1), hence the distinguished triangle is split by Derived Categories, Lemma 13.4.11. The uniqueness of (3) follows from (1). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BCG. Beware of the difference between the letter 'O' and the digit '0'.