Lemma 59.80.1. Let $S$ be a scheme all of whose local rings are strictly henselian. Then for any abelian sheaf $\mathcal{F}$ on $S_{\acute{e}tale}$ we have $H^ i(S_{\acute{e}tale}, \mathcal{F}) = H^ i(S_{Zar}, \mathcal{F})$.

Proof. Let $\epsilon : S_{\acute{e}tale}\to S_{Zar}$ be the morphism of sites given by the inclusion functor. The Zariski sheaf $R^ p\epsilon _*\mathcal{F}$ is the sheaf associated to the presheaf $U \mapsto H^ p_{\acute{e}tale}(U, \mathcal{F})$. Thus the stalk at $x \in X$ is $\mathop{\mathrm{colim}}\nolimits H^ p_{\acute{e}tale}(U, \mathcal{F}) = H^ p_{\acute{e}tale}(\mathop{\mathrm{Spec}}(\mathcal{O}_{X, x}), \mathcal{G}_ x)$ where $\mathcal{G}_ x$ denotes the pullback of $\mathcal{F}$ to $\mathop{\mathrm{Spec}}(\mathcal{O}_{X, x})$, see Lemma 59.51.5. Thus the higher direct images of $R^ p\epsilon _*\mathcal{F}$ are zero by Lemma 59.55.1 and we conclude by the Leray spectral sequence. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).