Lemma 36.15.1. Let X be a quasi-compact and quasi-separated scheme. Let U be a quasi-compact open subscheme. Let P be a perfect object of D(\mathcal{O}_ U). Then P is a direct summand of the restriction of a perfect object of D(\mathcal{O}_ X).
Proof. Special case of Lemma 36.13.11. \square
Comments (0)