Lemma 36.15.2. In Situation 36.9.1 denote j : U \to X the open immersion and let K be the perfect object of D(\mathcal{O}_ X) corresponding to the Koszul complex on f_1, \ldots , f_ r over A. For E \in D_\mathit{QCoh}(\mathcal{O}_ X) the following are equivalent
E = Rj_*(E|_ U), and
\mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(K[n], E) = 0 for all n \in \mathbf{Z}.
Proof.
Choose a distinguished triangle E \to Rj_*(E|_ U) \to N \to E[1]. Observe that
\mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(K[n], Rj_*(E|_ U)) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ U)}(K|_ U[n], E) = 0
for all n as K|_ U = 0. Thus it suffices to prove the result for N. In other words, we may assume that E restricts to zero on U. Observe that there are distinguished triangles
K^\bullet (f_1^{e_1}, \ldots , f_ i^{e'_ i}, \ldots , f_ r^{e_ r}) \to K^\bullet (f_1^{e_1}, \ldots , f_ i^{e'_ i + e''_ i}, \ldots , f_ r^{e_ r}) \to K^\bullet (f_1^{e_1}, \ldots , f_ i^{e''_ i}, \ldots , f_ r^{e_ r}) \to \ldots
of Koszul complexes, see More on Algebra, Lemma 15.28.11. Hence if \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(K[n], E) = 0 for all n \in \mathbf{Z} then the same thing is true for the K replaced by K_ e as in Lemma 36.9.6. Thus our lemma follows immediately from that one and the fact that E is determined by the complex of A-modules R\Gamma (X, E), see Lemma 36.3.5.
\square
Comments (0)