Proof.
Part (2) follows from (1) as \mathop{\mathrm{Ext}}\nolimits ^ n_{D(\mathcal{O}_ X)}(K, L) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(K, L[n]). We prove (1). Since K is perfect we have
\mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(K, L) = H^0(X, K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L)
where K^\vee is the “dual” perfect complex to K, see Cohomology, Lemma 20.50.5. Note that K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L is in D_\mathit{QCoh}(X) by Lemmas 36.3.9 and 36.10.1 (to see that a perfect complex has quasi-coherent cohomology sheaves). Say K^\vee has tor amplitude in [a, b]. Then the spectral sequence
E_1^{p, q} = H^ p(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} H^ q(L)) \Rightarrow H^{p + q}(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L)
shows that H^ j(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L) is zero if H^ q(L) = 0 for q \in [j - b, j - a]. Let N be the integer d of Cohomology of Schemes, Lemma 30.4.4. Then H^0(X, K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L) vanishes if the cohomology sheaves
H^{-N}(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L), \ H^{-N + 1}(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L), \ \ldots , \ H^0(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L)
are zero. Namely, by the lemma cited and Lemma 36.3.4, we have
H^0(X, K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L) = H^0(X, \tau _{\geq -N}(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L))
and by the vanishing of cohomology sheaves, this is equal to H^0(X, \tau _{\geq 1}(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L)) which is zero by Derived Categories, Lemma 13.16.1. It follows that \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(K, L) is zero if H^ i(L) = 0 for i \in [-b - N, -a].
\square
Comments (2)
Comment #8598 by Sasha on
Comment #9166 by Stacks project on