Lemma 15.39.4. Let $S \to R$ and $S' \to R$ be surjective maps of complete Noetherian local rings. Then $S \times _ R S'$ is a complete Noetherian local ring.

**Proof.**
Let $k$ be the residue field of $R$. If the characteristic of $k$ is $p > 0$, then we denote $\Lambda $ a Cohen ring (Algebra, Definition 10.160.5) with residue field $k$ (Algebra, Lemma 10.160.6). If the characteristic of $k$ is $0$ we set $\Lambda = k$. Choose a surjection $\Lambda [[x_1, \ldots , x_ n]] \to R$ (as in the Cohen structure theorem, see Algebra, Theorem 10.160.8) and lift this to maps $\Lambda [[x_1, \ldots , x_ n]] \to S$ and $\varphi : \Lambda [[x_1, \ldots , x_ n]] \to S$ and $\varphi ' : \Lambda [[x_1, \ldots , x_ n]] \to S'$ using Lemmas 15.39.1 and 15.37.5. Next, choose $f_1, \ldots , f_ m \in S$ generating the kernel of $S \to R$ and $f'_1, \ldots , f'_{m'} \in S'$ generating the kernel of $S' \to R$. Then the map

which sends $x_ i$ to $(\varphi (x_ i), \varphi '(x_ i))$ and $y_ j$ to $(f_ j, 0)$ and $z_{j'}$ to $(0, f'_ j)$ is surjective. Thus $S \times _ R S'$ is a quotient of a complete local ring, whence complete. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)