The Stacks project

Lemma 75.12.5. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of Noetherian algebraic spaces over $S$. Then $f_*$ on quasi-coherent sheaves has a right derived extension $\Phi : D(\mathit{QCoh}(\mathcal{O}_ X)) \to D(\mathit{QCoh}(\mathcal{O}_ Y))$ such that the diagram

\[ \xymatrix{ D(\mathit{QCoh}(\mathcal{O}_ X)) \ar[d]_{\Phi } \ar[r] & D_\mathit{QCoh}(\mathcal{O}_ X) \ar[d]^{Rf_*} \\ D(\mathit{QCoh}(\mathcal{O}_ Y)) \ar[r] & D_\mathit{QCoh}(\mathcal{O}_ Y) } \]

commutes.

Proof. Since $X$ and $Y$ are Noetherian the morphism is quasi-compact and quasi-separated (see Morphisms of Spaces, Lemma 67.8.10). Thus $f_*$ preserve quasi-coherence, see Morphisms of Spaces, Lemma 67.11.2. Next, let $K$ be an object of $D(\mathit{QCoh}(\mathcal{O}_ X))$. Since $\mathit{QCoh}(\mathcal{O}_ X)$ is a Grothendieck abelian category (Properties of Spaces, Proposition 66.32.2), we can represent $K$ by a K-injective complex $\mathcal{I}^\bullet $ such that each $\mathcal{I}^ n$ is an injective object of $\mathit{QCoh}(\mathcal{O}_ X)$, see Injectives, Theorem 19.12.6. Thus we see that the functor $\Phi $ is defined by setting

\[ \Phi (K) = f_*\mathcal{I}^\bullet \]

where the right hand side is viewed as an object of $D(\mathit{QCoh}(\mathcal{O}_ Y))$. To finish the proof of the lemma it suffices to show that the canonical map

\[ f_*\mathcal{I}^\bullet \longrightarrow Rf_*\mathcal{I}^\bullet \]

is an isomorphism in $D(\mathcal{O}_ Y)$. To see this it suffices to prove the map induces an isomorphism on cohomology sheaves. Pick any $m \in \mathbf{Z}$. Let $N = N(X, Y, f)$ be as in Lemma 75.6.1. Consider the short exact sequence

\[ 0 \to \sigma _{\geq m - N - 1}\mathcal{I}^\bullet \to \mathcal{I}^\bullet \to \sigma _{\leq m - N - 2}\mathcal{I}^\bullet \to 0 \]

of complexes of quasi-coherent sheaves on $X$. By Lemma 75.6.1 we see that the cohomology sheaves of $Rf_*\sigma _{\leq m - N - 2}\mathcal{I}^\bullet $ are zero in degrees $\geq m - 1$. Thus we see that $R^ mf_*\mathcal{I}^\bullet $ is isomorphic to $R^ mf_*\sigma _{\geq m - N - 1}\mathcal{I}^\bullet $. In other words, we may assume that $\mathcal{I}^\bullet $ is a bounded below complex of injective objects of $\mathit{QCoh}(\mathcal{O}_ X)$. This case follows from Leray's acyclicity lemma (Derived Categories, Lemma 13.16.7) with required vanishing because of Lemma 75.12.4. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09TM. Beware of the difference between the letter 'O' and the digit '0'.