The Stacks project

Lemma 30.28.2. Let $A$ be a Noetherian ring complete with respect to an ideal $I$. Write $S = \mathop{\mathrm{Spec}}(A)$ and $S_ n = \mathop{\mathrm{Spec}}(A/I^ n)$. Let $X \to S$ be a separated morphism of finite type. For $n \geq 1$ we set $X_ n = X \times _ S S_ n$. Suppose given a commutative diagram

\[ \xymatrix{ Y_1 \ar[r] \ar[d] & Y_2 \ar[r] \ar[d] & Y_3 \ar[r] \ar[d] & \ldots \\ X_1 \ar[r]^{i_1} & X_2 \ar[r]^{i_2} & X_3 \ar[r] & \ldots } \]

of schemes with cartesian squares. Assume that

  1. $Y_ n \to X_ n$ is a finite morphism, and

  2. $Y_1 \to S_1$ is proper.

Then there exists a finite morphism of schemes $Y \to X$ such that $Y_ n = Y \times _ S S_ n$. Moreover, $Y$ is proper over $S$.

Proof. Let's write $f_ n : Y_ n \to X_ n$ for the vertical morphisms. Set $\mathcal{F}_ n = f_{n, *}\mathcal{O}_{Y_ n}$. This is a coherent $\mathcal{O}_{X_ n}$-module as $f_ n$ is finite (Lemma 30.9.9). Using that the squares are cartesian we see that the pullback of $\mathcal{F}_{n + 1}$ to $X_ n$ is $\mathcal{F}_ n$. Hence Grothendieck's existence theorem, as reformulated in Remark 30.27.2, tells us there exists a coherent $\mathcal{O}_ X$-module $\mathcal{F}$ whose restriction to $X_ n$ recovers $\mathcal{F}_ n$. Moreover, the support of $\mathcal{F}$ is proper over $S$. As the completion functor is fully faithful (Theorem 30.27.1) we see that the multiplication maps $\mathcal{F}_ n \otimes _{\mathcal{O}_{X_ n}} \mathcal{F}_ n \to \mathcal{F}_ n$ fit together to give an algebra structure on $\mathcal{F}$. Setting $Y = \underline{\mathop{\mathrm{Spec}}}_ X(\mathcal{F})$ finishes the proof. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09ZT. Beware of the difference between the letter 'O' and the digit '0'.