Lemma 69.12.1. Let $S$ be a scheme. Let $f : X \to Y$ be a proper morphism of algebraic spaces over $S$ with $Y$ quasi-compact and quasi-separated. Then $X = \mathop{\mathrm{lim}}\nolimits X_ i$ is a directed limit of algebraic spaces $X_ i$ proper and of finite presentation over $Y$ and with transition morphisms and morphisms $X \to X_ i$ closed immersions.
Proof. By Proposition 69.11.7 we can find a closed immersion $X \to X'$ with $X'$ separated and of finite presentation over $Y$. By Lemma 69.11.4 we can write $X = \mathop{\mathrm{lim}}\nolimits X_ i$ with $X_ i \to X'$ a closed immersion of finite presentation. We claim that for all $i$ large enough the morphism $X_ i \to Y$ is proper which finishes the proof.
To prove this we may assume that $Y$ is an affine scheme, see Morphisms of Spaces, Lemma 66.40.2. Next, we use the weak version of Chow's lemma, see Cohomology of Spaces, Lemma 68.18.1, to find a diagram
where $X'' \to \mathbf{P}^ n_ Y$ is an immersion, and $\pi : X'' \to X'$ is proper and surjective. Denote $X'_ i \subset X''$, resp. $\pi ^{-1}(X)$ the scheme theoretic inverse image of $X_ i \subset X'$, resp. $X \subset X'$. Then $\mathop{\mathrm{lim}}\nolimits X'_ i = \pi ^{-1}(X)$. Since $\pi ^{-1}(X) \to Y$ is proper (Morphisms of Spaces, Lemmas 66.40.4), we see that $\pi ^{-1}(X) \to \mathbf{P}^ n_ Y$ is a closed immersion (Morphisms of Spaces, Lemmas 66.40.6 and 66.12.3). Hence for $i$ large enough we find that $X'_ i \to \mathbf{P}^ n_ Y$ is a closed immersion by Lemma 69.5.16. Thus $X'_ i$ is proper over $Y$. For such $i$ the morphism $X_ i \to Y$ is proper by Morphisms of Spaces, Lemma 66.40.7. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)