Lemma 69.12.1. Let $S$ be a scheme. Let $f : X \to Y$ be a proper morphism of algebraic spaces over $S$ with $Y$ quasi-compact and quasi-separated. Then $X = \mathop{\mathrm{lim}}\nolimits X_ i$ is a directed limit of algebraic spaces $X_ i$ proper and of finite presentation over $Y$ and with transition morphisms and morphisms $X \to X_ i$ closed immersions.

## 69.12 Approximating proper morphisms

**Proof.**
By Proposition 69.11.7 we can find a closed immersion $X \to X'$ with $X'$ separated and of finite presentation over $Y$. By Lemma 69.11.4 we can write $X = \mathop{\mathrm{lim}}\nolimits X_ i$ with $X_ i \to X'$ a closed immersion of finite presentation. We claim that for all $i$ large enough the morphism $X_ i \to Y$ is proper which finishes the proof.

To prove this we may assume that $Y$ is an affine scheme, see Morphisms of Spaces, Lemma 66.40.2. Next, we use the weak version of Chow's lemma, see Cohomology of Spaces, Lemma 68.18.1, to find a diagram

where $X'' \to \mathbf{P}^ n_ Y$ is an immersion, and $\pi : X'' \to X'$ is proper and surjective. Denote $X'_ i \subset X''$, resp. $\pi ^{-1}(X)$ the scheme theoretic inverse image of $X_ i \subset X'$, resp. $X \subset X'$. Then $\mathop{\mathrm{lim}}\nolimits X'_ i = \pi ^{-1}(X)$. Since $\pi ^{-1}(X) \to Y$ is proper (Morphisms of Spaces, Lemmas 66.40.4), we see that $\pi ^{-1}(X) \to \mathbf{P}^ n_ Y$ is a closed immersion (Morphisms of Spaces, Lemmas 66.40.6 and 66.12.3). Hence for $i$ large enough we find that $X'_ i \to \mathbf{P}^ n_ Y$ is a closed immersion by Lemma 69.5.16. Thus $X'_ i$ is proper over $Y$. For such $i$ the morphism $X_ i \to Y$ is proper by Morphisms of Spaces, Lemma 66.40.7. $\square$

Lemma 69.12.2. Let $f : X \to Y$ be a proper morphism of algebraic spaces over $\mathbf{Z}$ with $Y$ quasi-compact and quasi-separated. Then there exists a directed set $I$, an inverse system $(f_ i : X_ i \to Y_ i)$ of morphisms of algebraic spaces over $I$, such that the transition morphisms $X_ i \to X_{i'}$ and $Y_ i \to Y_{i'}$ are affine, such that $f_ i$ is proper and of finite presentation, such that $Y_ i$ is of finite presentation over $\mathbf{Z}$, and such that $(X \to Y) = \mathop{\mathrm{lim}}\nolimits (X_ i \to Y_ i)$.

**Proof.**
By Lemma 69.12.1 we can write $X = \mathop{\mathrm{lim}}\nolimits _{k \in K} X_ k$ with $X_ k \to Y$ proper and of finite presentation. Next, by absolute Noetherian approximation (Proposition 69.8.1) we can write $Y = \mathop{\mathrm{lim}}\nolimits _{j \in J} Y_ j$ with $Y_ j$ of finite presentation over $\mathbf{Z}$. For each $k$ there exists a $j$ and a morphism $X_{k, j} \to Y_ j$ of finite presentation with $X_ k \cong Y \times _{Y_ j} X_{k, j}$ as algebraic spaces over $Y$, see Lemma 69.7.1. After increasing $j$ we may assume $X_{k, j} \to Y_ j$ is proper, see Lemma 69.6.13. The set $I$ will be consist of these pairs $(k, j)$ and the corresponding morphism is $X_{k, j} \to Y_ j$. For every $k' \geq k$ we can find a $j' \geq j$ and a morphism $X_{j', k'} \to X_{j, k}$ over $Y_{j'} \to Y_ j$ whose base change to $Y$ gives the morphism $X_{k'} \to X_ k$ (follows again from Lemma 69.7.1). These morphisms form the transition morphisms of the system. Some details omitted.
$\square$

Recall the scheme theoretic support of a finite type quasi-coherent module, see Morphisms of Spaces, Definition 66.15.4.

Lemma 69.12.3. Assumptions and notation as in Situation 69.6.1. Let $\mathcal{F}_0$ be a quasi-coherent $\mathcal{O}_{X_0}$-module. Denote $\mathcal{F}$ and $\mathcal{F}_ i$ the pullbacks of $\mathcal{F}_0$ to $X$ and $X_ i$. Assume

$f_0$ is locally of finite type,

$\mathcal{F}_0$ is of finite type,

the scheme theoretic support of $\mathcal{F}$ is proper over $Y$.

Then the scheme theoretic support of $\mathcal{F}_ i$ is proper over $Y_ i$ for some $i$.

**Proof.**
We may replace $X_0$ by the scheme theoretic support of $\mathcal{F}_0$. By Morphisms of Spaces, Lemma 66.15.2 this guarantees that $X_ i$ is the support of $\mathcal{F}_ i$ and $X$ is the support of $\mathcal{F}$. Then, if $Z \subset X$ denotes the scheme theoretic support of $\mathcal{F}$, we see that $Z \to X$ is a universal homeomorphism. We conclude that $X \to Y$ is proper as this is true for $Z \to Y$ by assumption, see Morphisms, Lemma 29.41.9. By Lemma 69.6.13 we see that $X_ i \to Y$ is proper for some $i$. Then it follows that the scheme theoretic support $Z_ i$ of $\mathcal{F}_ i$ is proper over $Y$ by Morphisms of Spaces, Lemmas 66.40.5 and 66.40.4.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)